HIV-1 is a major global health challenge. The development of an effective vaccine and a therapeutic cure are top priorities. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 stymies this progress. Therapeutic strategies that provide effective and broad-spectrum neutralization against HIV-1 infection are highly desirable. We investigated the potential of nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP) encapsulating the DIABLO/SMAC mimetics LCL-161 or AT-406 (also known as SM-406 or Debio 1143) to both neutralize HIV-1 and selectively kill HIV-1-infected resting CD4+ T cells and macrophages. DIABLO/SMAC mimetic-loaded TNP displayed outstanding neutralizing breadth and potency, and selectively kill HIV-1-infected cells via autophagy-dependent apoptosis while having no drug-induced off-target or cytotoxic effects on bystander cells. Genetic inhibition of early stages of autophagy abolishes this effect. DIABLO/SMAC mimetic loaded TNP have the potential to be used as therapeutic agents to neutralize cell-free HIV-1 and to kill specifically HIV-1-infected cells as part of an HIV-1 cure strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419049PMC
http://dx.doi.org/10.7150/thno.59728DOI Listing

Publication Analysis

Top Keywords

kill hiv-1-infected
16
selectively kill
12
hiv-1-infected cells
12
encapsulating diablo/smac
8
diablo/smac mimetics
8
neutralize hiv-1
8
hiv-1 selectively
8
cells hiv-1
8
hiv-1
7
cells
5

Similar Publications

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds promise to provide life-long remission following a single treatment. Here we report a multi-pronged anti-HIV-1 HSPC-based gene therapy designed to defend against and attack HIV-1 infection. We developed a lentiviral vector capable of co-expressing three anti-HIV-1 genes.

View Article and Find Full Text PDF

KDM5A/B contribute to HIV-1 latent infection and survival of HIV-1 infected cells.

Antiviral Res

August 2024

Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. Electronic address:

Combinational antiretroviral therapy (cART) suppresses human immunodeficiency virus type 1 (HIV-1) viral replication and pathogenesis in acquired immunodeficiency syndrome (AIDS) patients. However, HIV-1 remains in the latent stage of infection by suppressing viral transcription, which hinders an HIV-1 cure. One approach for an HIV-1 cure is the "shock and kill" strategy.

View Article and Find Full Text PDF

From Glycolysis to Viral Defense: The Multifaceted Impact of Glycolytic Enzymes on Human Immunodeficiency Virus Type 1 Replication.

Biol Pharm Bull

May 2024

Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University.

Viruses require host cells to replicate and proliferate, which indicates that viruses hijack the cellular machinery. Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4-positive T cells, and efficiently uses cellular proteins to replicate. Cells already have proteins that inhibit the replication of the foreign HIV-1, but their function is suppressed by viral proteins.

View Article and Find Full Text PDF

Purpose Of Review: Advancements in antiretroviral therapy (ART) have positively impacted the life expectancy and possibility of living a normal life for people with HIV-1. However, lifelong daily medication is necessary to prevent disease progression. To this end, immunotherapeutic strategies are being tested with the aim of developing a functional cure in which the immune system effectively controls HIV-1 in the absence of ART.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!