Quinazoline analogues as cytotoxic agents; QSAR, docking, and studies.

Res Pharm Sci

Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran.

Published: October 2021

Background And Purpose: Synthesis and investigation of pharmacological activity of novel compounds are time and money-consuming. However, computational techniques, docking, and studies have facilitated drug discovery research to design pharmacologically effective compounds.

Experimental Approach: In this study, a series of quinazoline derivatives were applied to quantitative structure-activity relationship (QSAR) analysis. A collection of chemometric methods were conducted to provide relations between structural features and cytotoxic activity of a variety of quinazoline derivatives against breast cancer cell line. An -screening was accomplished and new impressive lead compounds were designed to target the epidermal growth factor receptor (EGFR)-active site based on a new structural pattern. Molecular docking was performed to delve into the interactions, free binding energy, and molecular binding mode of the compounds against the EGFR target.

Findings/results: A comparison between different methods significantly indicated that genetic algorithm-partial least-squares were selected as the best model for quinazoline derivatives. In the current study, constitutional, functional, chemical, resource description framework, 2D autocorrelation, and charge descriptors were considered as significant parameters for the prediction of anticancer activity of quinazoline derivatives. screening was employed to discover new compounds with good potential as anticancer agents and suggested to be synthesized. Also, the binding energy of docking simulation showed desired correlation with QSAR and experimental data.

Conclusion And Implications: The results showed good accordance between binding energy and QSAR results. Compounds Q-Q are desired to be synthesized and applied to evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407157PMC
http://dx.doi.org/10.4103/1735-5362.323919DOI Listing

Publication Analysis

Top Keywords

quinazoline derivatives
16
binding energy
12
docking studies
8
quinazoline
5
compounds
5
quinazoline analogues
4
analogues cytotoxic
4
cytotoxic agents
4
qsar
4
agents qsar
4

Similar Publications

Background: Plant diseases caused by plant pathogens pose a great threat to biodiversity and food security, and the problem of drug resistance caused by traditional antibiotics and fungicides is becoming more and more serious. It is urgent to develop new antibacterial molecules with low toxicity and high efficiency. Marinoquinoline A is an alkaloid isolated from marine actinomycetes and has a variety of pharmacological activities.

View Article and Find Full Text PDF

Quinazoline derivatives as novel bacterial sphingomyelinase enzyme inhibitors.

Bioorg Chem

December 2024

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye. Electronic address:

Bacillus cereus sphingomyelinase C (B. cereus SMase), which plays a crucial role in bacterial virulence, has emerged as a new therapeutic target for treating opportunistic infections caused by this pathogen. It also shares catalytic domain similarity with human neutral sphingomyelinase 2 (nSMase2), which is implicated in Alzheimer's disease.

View Article and Find Full Text PDF

Evaluation of Fifteen 5,6-Dihydrotetrazolo[1,5-]quinazolines Against : Integrating In Vitro Studies, Molecular Docking, QSAR, and In Silico Toxicity Assessments.

J Fungi (Basel)

November 2024

Department of Biosciences and Biotechnologies, Graduate School of Bioresources and Bioenvironment Sciences, Kyushu University, 744 W5-674, Motooka Nishi-ku, Fukuoka 819-0395, Japan.

(), the second most prevalent Candida pathogen globally, has emerged as a major clinical threat due to its ability to develop high-level azole resistance. In this study, two new 5,6-dihydrotetrazolo[1,5-]quinazoline derivatives ( and ) were synthesized and characterized using IR, LC-MS, H, and C NMR spectra. Along with 13 previously reported analogues, these compounds underwent in vitro antifungal testing against clinical isolates using a serial dilution method (0.

View Article and Find Full Text PDF

Synthesis of Atropisomeric Quinazolin-4-one Derivatives Based on Remote H/D and C/C Discrimination.

J Org Chem

December 2024

Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan.

Both enantiomers of 2-ethylquinazolin-4-ones bearing -CHO/CDO and CHO/CHO phenyl groups at the N3 position were prepared. These are isotopic atropisomeric compounds based on a remote and conformationally flexible H/D and C/C discrimination, and it was found that a CHCl solution of -CHO/CDO derivative shows a slight specific optical rotation. Furthermore, diastereomeric quinazolinone derivatives bearing a chiral carbon were prepared, and their stereochemical purities and rotational stability as well as the isotopic atropisomerism were verified by H NMR and chiral high-performance liquid chromatography (HPLC) analyses.

View Article and Find Full Text PDF

Cervical cancer is the fourth most common cancer among women globally. Its development is closely linked to accelerated cell cycle progression and the inhibition of apoptosis in cervical cancer tissues. Gefitinib has demonstrated efficacy in inhibiting cervical cancer cells, and the 1,2,3-triazole structure is widely recognized for its role in inducing mitochondrial apoptosis in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!