Panax ginseng is one of the oldest and most generally prescribed herbs in Eastern traditional medicine to treat diseases. Several studies had documented that ginseng leaves have anti-oxidative, anti-inflammatory, and anticancer properties similar to those of ginseng root. The aim of this research was to forecast of the molecular mechanism of ginseng leaves on lung cancer by molecular docking and network pharmacology so as to decipher ginseng leaves' entire mechanism. The compounds associated with ginseng leaves were searched by TCMSP. TCMSP and Swiss Target Prediction databases were used to sort out the potential targets of the main chemical components. Targets were collected from OMIM, PharmGKB, TTD, DrugBank and GeneCards which related to immunity and lung cancer. Ginseng leaves exert its lung cancer suppressive function by regulating the several signaling proteins, such as JUN, STAT3, AKT1, TNF, MAPK1, TP53. GO and KEGG analyses indicated that the immunoreaction against lung cancer by ginseng leaves might be related to response to lipopolysaccharide, response to oxidative stress, PI3K-Akt, MAPK and TNF pathway. Molecular docking analysis demonstrated that hydrogen bonding was interaction's core forms. The results of CCK8 test and qRT-PCR showed that ginseng leaves inhibit cell proliferation and regulates AKT1 and P53 expression in A549. The present study clarifies the mechanism of Ginseng leaves against lung cancer and provides evidence to support its clinical use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440634 | PMC |
http://dx.doi.org/10.1038/s41598-021-97115-8 | DOI Listing |
Curr Microbiol
December 2024
College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China.
β-Glucosidase plays a pivotal role in transforming ginsenosides into specific minor ginsenosides. In this study, total ginsenosides from Panax notoginseng leaves were used as substrates to stimulate the growth of Aspergillus niger NG1306. Transcriptome analysis identified a β-glucosidase gene, Anglu04478 (1455 bp, 484 amino acids, 54.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China.
Background: Safflower thrives in dry environments but faces difficulties with flowering in wet and rainy summers. Flavonoids play a role in flower development and can potentially alleviate these challenges. Furthermore, the FLOWERING LOCUS T (FT) family of phosphatidylethanolamine-binding protein (PEBP) genes play a crucial role in the photoperiodic flowering pathway.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China.
Rare dehydrated ginsenosides barely exist in natural ginseng plants. Herein, the confined microwave technique was utilized to transform the main ginsenosides of leaves (PNL) into dehydrated ginsenosides. The main microwave-treated products of dried PNL are dehydrated ginsenoside Rk1, Rg5, notoginsenoside SFt3, and SFt4.
View Article and Find Full Text PDFMolecules
December 2024
School of Functional Food & Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
Molecules
December 2024
College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
A novel screening platform based on an FeO@C@PDA-Ni@COX-2 ligand fishing combination with high-performance liquid chromatography-mass spectrometry was first designed, synthesized, and employed to screen and identify COX-2 inhibitors from leaves. The obtained magnetic nanoparticles exhibit outstanding preconcentration ability that allows for controlling the enzyme orientation to avoid enzyme active site blocking, conformational changes, or denaturing during immobilization. The as-prepared FeO@C@PDA-Ni@COX-2 composite was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectrometry (FT-IR), Xray powder diffraction (XRD), thermal gravimetric analyzer (TGA), vibrating sample magnetometer (VSM), and Zeta potential analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!