Frequency microcombs, alternative to mode-locked laser and fiber combs, enable miniature rulers of light for applications including precision metrology, molecular fingerprinting and exoplanet discoveries. To enable frequency ruling functions, microcombs must be stabilized by locking their carrier-envelope offset frequency. So far, the microcomb stabilization remains compounded by the elaborate optics external to the chip, thus evading its scaling benefit. To address this challenge, here we demonstrate a nanophotonic chip solution based on aluminum nitride thin films, which simultaneously offer optical Kerr nonlinearity for generating octave soliton combs and quadratic nonlinearity for enabling heterodyne detection of the offset frequency. The agile dispersion control of crystalline aluminum nitride photonics permits high-fidelity generation of solitons with features including 1.5-octave spectral span, dual dispersive waves, and sub-terahertz repetition rates down to 220 gigahertz. These attractive characteristics, aided by on-chip phase-matched aluminum nitride waveguides, allow the full determination of the offset frequency. Our proof-of-principle demonstration represents an important milestone towards fully integrated self-locked microcombs for portable optical atomic clocks and frequency synthesizers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440561PMC
http://dx.doi.org/10.1038/s41467-021-25751-9DOI Listing

Publication Analysis

Top Keywords

aluminum nitride
16
offset frequency
12
frequency
6
aluminum
4
nitride nanophotonics
4
nanophotonics beyond-octave
4
beyond-octave soliton
4
soliton microcomb
4
microcomb generation
4
generation self-referencing
4

Similar Publications

Bulk Acoustic Wave (BAW) filters find applications in radio frequency (RF) communication systems for Wi-Fi, 3G, 4G, and 5G networks. In the beyond-5G (potential 6G) era, high-frequency bands (>8 GHz) are expected to require resonators with high-quality factor (Q) and electromechanical coupling ( ) to form filters with low insertion loss and high selectivity. However, both the Q and of resonator devices formed in traditional uniform polarization piezoelectric films of aluminum nitride (AlN) and aluminum scandium nitride (AlScN) decrease when scaled beyond 8 GHz.

View Article and Find Full Text PDF

Rational design of heterostructure (HS)-based surface acoustic wave (SAW) smart gas sensors for efficient and accurate subppm level ammonia (NH) detection at room temperature (RT) is of great significance in environmental protection and human safety. This study introduced a novel HS composed of an AlN-based SAW resonator and CuO nanoparticles (NPs) as a chemical interface for NH detection at RT (∼26 °C). The structural, morphological, and chemical compositions were detailly investigated, which demonstrates that the CuO/AlN HS was successfully formed via interfacial modulation.

View Article and Find Full Text PDF

We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.

View Article and Find Full Text PDF

Proximity ferroelectricity in wurtzite heterostructures.

Nature

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.

Proximity ferroelectricity is an interface-associated phenomenon in electric-field-driven polarization reversal in a non-ferroelectric polar material induced by one or more adjacent ferroelectric materials. Here we report proximity ferroelectricity in wurtzite ferroelectric heterostructures. In the present case, the non-ferroelectric layers are AlN and ZnO, whereas the ferroelectric layers are AlBN, AlScN and ZnMgO.

View Article and Find Full Text PDF

Aluminum nitride (AlN) with a wide band gap (approximately 6.2 eV) has attractive characteristics, including high thermal conductivity, a high dielectric constant, and good insulating properties, which are suitable for the field of resistive random access memory. AlN thin films were deposited on ITO substrate using the radio-frequency magnetron sputtering technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!