Adjacent single-atom irons boosting molecular oxygen activation on MnO.

Nat Commun

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China.

Published: September 2021

Efficient molecular oxygen activation is crucial for catalytic oxidation reaction, but highly depends on the construction of active sites. In this study, we demonstrate that dual adjacent Fe atoms anchored on MnO can assemble into a diatomic site, also called as MnO-hosted Fe dimer, which activates molecular oxygen to form an active intermediate species Fe(O = O)Fe for highly efficient CO oxidation. These adjacent single-atom Fe sites exhibit a stronger O activation performance than the conventional surface oxygen vacancy activation sites. This work sheds light on molecular oxygen activation mechanisms of transition metal oxides and provides an efficient pathway to activate molecular oxygen by constructing new active sites through single atom technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440510PMC
http://dx.doi.org/10.1038/s41467-021-25726-wDOI Listing

Publication Analysis

Top Keywords

molecular oxygen
20
oxygen activation
12
adjacent single-atom
8
active sites
8
oxygen
6
molecular
5
activation
5
single-atom irons
4
irons boosting
4
boosting molecular
4

Similar Publications

Porphyrin's excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin molecules into nanoscale covalent organic frameworks (COFs) structures can circumvent issues such as poor dispersibility resulting from hydrophobicity, thereby significantly augmenting the photoactivity of porphyrin materials.

View Article and Find Full Text PDF

Impact of Citric Acid on the Structure, Barrier, and Tensile Properties of Esterified/Cross-Linked Potato Peel-Based Films and Coatings.

Polymers (Basel)

December 2024

Meat Technology & Science of Protein-Rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre, KU Leuven Campus Ghent, B-9000 Ghent, Belgium.

The valorization of potato peel side streams for food packaging applications, especially for the substitution of current petrochemical-based oxygen barrier solutions such as EVOH, is becoming increasingly important. Therefore, potato peel-based films and coatings (on PLA) were developed containing 10-50% (/ potato peel) citric acid (CA). To determine the impact of CA concentration on the structure and physicochemical properties of cast films and coatings, ATR-FTIR spectroscopy, moisture adsorption isotherms, tensile properties, light transmittance, oxygen permeability, carbon dioxide transmission rate, and water vapor transmission rate measurements were performed.

View Article and Find Full Text PDF

Rice sheath blight (RSB), caused by the pathogenic fungus , poses a significant threat to global food security. The defense mechanisms employed by rice against RSB are not well understood. In our study, we analyzed the interactions between rice and by comparing the phenotypic changes, ROS content, and metabolite variations in both tolerant and susceptible rice varieties during the early stages of fungal infection.

View Article and Find Full Text PDF

Density Functional Theory Insight in Photocatalytic Degradation of Dichlorvos Using Covalent Triazine Frameworks Modified by Various Oxygen-Containing Acid Groups.

Toxics

December 2024

Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.

Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox ability, have emerged as promising candidates for the photocatalytic degradation of DDVP. Nevertheless, pure CTFs lack effective oxidative active sites, resulting in elevated reaction energy barriers during the photodegradation of DDVP.

View Article and Find Full Text PDF

(Mtb) is the causative agent of tuberculosis, the world's deadliest infectious disease. Mtb uses a variety of mechanisms to evade the human host's defenses and survive intracellularly. Mtb's oxidative stress response enables Mtb to survive within activated macrophages, an environment with reactive oxygen species and low pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!