AI Article Synopsis

  • Regenerative endodontics is exploring new methods for pulp tissue regeneration beyond traditional techniques, using both mesenchymal and non-mesenchymal stem cells for better outcomes.
  • A systematic review of studies from 2015 to 2020 focused on methods of inducing odontoblastic differentiation, analyzing 99 initial studies but narrowing it down to 11 that met the inclusion criteria.
  • The results suggest that scaffold-based induction methods are more effective than non-scaffold approaches, highlighting the potential benefits of combining growth factors, but more research is needed to fully understand and improve odontoblastic differentiation processes.

Article Abstract

Background: In the area of oral and maxillofacial surgery, regenerative endodontics aims to present alternative options to conventional treatment strategies. With continuous advances in regenerative medicine, the source of cells used for pulp tissue regeneration is not only limited to mesenchymal stem cells as the non-mesenchymal stem cells have shown capabilities too. In this review, we are systematically assessing the recent findings on odontoblastic differentiation induction with scaffold and non-scaffold approaches.

Methods: A comprehensive search was conducted in Pubmed, and Scopus, and relevant studies published between 2015 and 2020 were selected following the PRISMA guideline. The main inclusion criteria were that articles must be revolving on method for osteoblast differentiation in vitro study. Therefore, in vivo and human or animal clinical studies were excluded. The search outcomes identified all articles containing the word "odontoblast", "differentiation", and "mesenchymal stem cell".

Results: The literature search identified 99 related studies, but only 11 articles met the inclusion criteria. These include 5 odontoblastic differentiation induction with scaffold, 6 inductions without scaffolds. The data collected were characterised into two main categories: type of cells undergo odontoblastic differentiation, and odontoblastic differentiation techniques using scaffolds or non-scaffold.

Conclusion: Based on the data analysis, the scaffold-based odontoblastic induction method seems to be a better option compared to the non-scaffold method. In addition of that, the combination of growth factors in scaffold-based methods could possibly enhance the differentiation. Thus, further detailed studies are still required to understand the mechanism and the way to enhance odontoblastic differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442352PMC
http://dx.doi.org/10.1186/s12575-021-00155-7DOI Listing

Publication Analysis

Top Keywords

odontoblastic differentiation
20
stem cells
12
mesenchymal stem
8
odontoblastic induction
8
differentiation induction
8
induction scaffold
8
inclusion criteria
8
odontoblastic
7
differentiation
7
cells
5

Similar Publications

Objectives: Dental pulp stem cells (DPSCs) are essential for reparative dentinogenesis following damage or infection. DPSCs surrounding the blood vessels in the central region of the dental pulp actively proliferate after tooth injury and differentiate into new odontoblast-like cells or odontoblasts to form reparative dentin. However, the signaling pathways involved in undifferentiated and osteodifferentiated DPSCs under inflammatory conditions remain unclear.

View Article and Find Full Text PDF

Apical periodontitis is an inflammatory disease caused by bacterial infection in the root canal that spreads to the apical periodontal tissues, resulting in bone resorption around the root apex as the disease progresses. Vascular endothelial growth factor (VEGF), a growth factor involved in angiogenesis, plays an important role in bone remodeling. We reported that caffeic acid phenethyl ester (CAPE), a bioactive substance of propolis, induces VEGF in odontoblast-like cells and dental pulp cells.

View Article and Find Full Text PDF

Dental pulp (DP) is a connective tissue composed of various cell types, including fibroblasts, neurons, adipocytes, endothelial cells, and odontoblasts. It contains a rich supply of pluripotent stem cells, making it an important resource for cell-based regenerative medicine. However, current stem cell collection methods rely heavily on the enzymatic digestion of dissected DP tissue to isolate and propagate primary cells, which often results in low recovery rates and reduced cell survival, particularly from deciduous teeth.

View Article and Find Full Text PDF

KPNB1-ATF4 induces BNIP3-dependent mitophagy to drive odontoblastic differentiation in dental pulp stem cells.

Cell Mol Biol Lett

November 2024

Department of Endodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, 117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, People's Republic of China.

Background: Differentiating dental pulp stem cells (DPSCs) into odontoblasts is a critical process for tooth self-repair and dentine‒pulp engineering strategies in the clinic. However, the mechanism underlying the regulation of DPSC odontoblastic differentiation remains largely unknown. Here, we demonstrated that BCL-2 interacting protein 3 (BNIP3)-dependent mitophagy is associated with importin subunit beta-1 (KPNB1)-activating transcription factor 4 (ATF4), which promotes DPSC odontoblastic differentiation.

View Article and Find Full Text PDF

Bmi1 is a polycomb protein localized in stem cells and maintains their stemness. This protein is also reported to regulate the expression of various differentiation genes. In this study, to analyze the role of Bmi1 during dentinogenesis, we examined the immunohistochemical localization of Bmi1 during rat tooth development as well as after cavity preparation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!