The differentiation of cardiac fibroblast to myofibroblast is the key process of cardiac fibrosis. In the study, we aimed to determine the function of E2F Transcription Factor 1 (E2F1) in human cardiac fibroblasts (HCFs) differentiation, search for its downstream genes and elucidate the function of them in HCFs differentiation. As a result, we found that E2F1 was up-regulated in TGF-β1-induced HCFs differentiation. Silencing the expression of E2F1 by siRNA in HCFs, we found that the expression of differentiation-related genes (Collagen-1, α-Smooth muscle actin, and Fibronectin-1) was significantly suppressed, combining with proliferation and migration assay, we determined that HCFs differentiation was decreased. Luciferase report assay and immunoprecipitation proved that the oncogene CCNE2 was a direct target gene of E2F1, overexpression of CCNE2 was found in differentiated HCFs, silencing the expression of CCNE2 by siRNA decreased HCFs differentiation. Our research suggested that E2F1 and its downstream target gene CCNE2 play a vital role in TGF-β1-induced HCFs differentiation, thus E2F1 and CCNE2 may be a potential therapeutic target for cardiac fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806588 | PMC |
http://dx.doi.org/10.1080/21655979.2021.1972194 | DOI Listing |
J Cardiovasc Transl Res
October 2024
Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China.
Mol Cell Biochem
July 2024
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
Cardiac fibrosis is a commonly seen pathophysiological process in various cardiovascular disorders, such as coronary heart disorder, hypertension, and cardiomyopathy. Cardiac fibroblast trans-differentiation into myofibroblasts (MFs) is a key link in myocardial fibrosis. LncRNA PVT1 participates in fibrotic diseases in multiple organs; however, its role and mechanism in cardiac fibrosis remain largely unknown.
View Article and Find Full Text PDFJ Ocul Pharmacol Ther
October 2024
Department of Biochemistry, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Türkiye.
Corneal fibroblasts are involved in the wound healing of the cornea with proliferation, migration, and differentiation processes. Coenzyme Q10 (CoQ10) and vitamin E can enhance corneal wound healing when applied after a corneal lesion as an eye drop. Thus, this study was performed to determine the potential efficiency of a CoQ10 ophthalmical solution containing a CoQ10 and vitamin E D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-derived formulation in human corneal fibroblasts (HCFs) .
View Article and Find Full Text PDFBackground: Pulmonary hypertension (PH)-induced right ventricular (RV) failure (PH-RVF) is a significant prognostic determinant of mortality and is characterized by RV hypertrophy, endothelial-to-mesenchymal transition (EndMT), fibroblast-to-myofibroblast transition (FMT), fibrosis, and extracellular matrix (ECM)-remodeling. Despite the importance of RV function in PH, the mechanistic details of PH-RVF, especially the regulatory control of RV EndMT, FMT, and fibrosis, remain unclear. The action of transcription factor Snai1 is shown to be mediated through LOXL2 recruitment, and their co-translocation to the nucleus, during EndMT progression.
View Article and Find Full Text PDFActa Pharmacol Sin
August 2024
The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!