Although several metal ions/metal nanoparticles (NPs) are toxic to both plants and animals, some of them are used as nutrients and growth promoters. Plants exposed to silver nanoparticles (Ag-NPs) have shown both beneficial and harmful effects. All concentrations of Ag-NPs are not effective for a given plant because any excess can block the passage of essential nutrients. Regulated treatment of plants by Ag-NPs may enhance their overall growth and development. It has been noticed that Ag-NPs decrease the mass of edible plants (, , cabbage, and lettuce) and vegetables, but they also induce the germination of seeds in many cases. NPs interact with proteins, enzymes, and carbohydrates influencing the total biomass, root, and shoot growth of plants. Also, Ag-NPs act as an ethylene inhibitor and activate the antioxidants in onions. Their substantial quantity becomes deposited in onion leaves and bulbs. Size and concentration are the two major factors responsible for the increase/decrease of plant growth and biomass. Plants make adaptations to reduce the toxicity caused by Ag-NPs. In some cases, Ag-NPs induce root elongation and increase chlorophyll, carbohydrate, proteins, rate of photosynthesis and inhibit the biosynthesis of ethylene. This review article provides a comprehensive overview of both the beneficial and adverse effects of Ag-NPs on germination, growth, development, physiological, and biochemical characteristics of a wide range of edible and crop plants. We have also critically discussed: the chemistry, toxicity, uptake, translocation, and accumulation of Ag-NPs in plant systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07388551.2021.1975091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!