Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pollutant removal efficiency of traditionally constructed wetlands (CWs) is often limited due to low interaction time between wastewater and the CW matrix (plants, microbes, and substrates). A zigzag-horizontal subsurface flow constructed wetland with effluent recirculation (Z-HSSF + ER) was developed to improve removal efficiency. Echinodorus cordifolius plants were used in this study. The efficiency of the systems was evaluated using eutrophic wastewater. The results showed that the developed systems exhibited the high removal efficiency of algal cells, PO, and NO (97%, 70%, and 100%, respectively), within 5 days. Algal cells were removed by the interception mechanism of gravel and zigzag baffles. PO and NO in the eutrophic wastewater was mainly removed by E. cordifolius including rhizobacteria and other microorganisms. The long flow pathway created by the installation of zigzag baffles combined with effluent recirculation provides high dissolved oxygen (DO) in the systems and increases the interaction time between wastewater and the CW matrix, thus improving the pollutant removal efficiency of CWs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.113720 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!