Zeolite impeded geopolymer (Z/G) was synthesized from natural kaolinite and diatomite. The structure (Z/G) was characterized as an enhanced adsorbent for PO and NH ions from aqueous solutions, groundwater, and sewage water. The synthetic Z/G structure exhibits sequestration capacities of 206 mg/g and 140 mg/g for PO and NH, respectively which are higher values than the recognized results for the geopolymer and other adsorbents in literature. The sequestration reactions of PO and NH by Z/G are of Pseudo-Second order kinetic behavior considering both the Chi-squared (χ) and correlation coefficient (R) values. The sequestration reactions occur in homogenous and monolayer forms considering their agreement with Langmuir behavior. The Gaussian energies (12.4 kJ/mol (PO) and 10.47 kJ/mol (NH)) demonstrate the operation of a chemical sequestration mechanism that might be involved zeolitic ion exchange process and chemical complexation. Additionally, these reactions are exothermic processes of spontaneous and favorable properties based on thermodynamic studies. The Z/G structure is of significant affinity for both PO and NH even in the existence of other anions as Cl, HCO, SO, and NO. Finally, the structure used effectively in the purification of groundwater and sewage water from PO and NH in addition to nitrate, sulfate, and some metal ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.113723 | DOI Listing |
Sci Total Environ
January 2025
University of Natural Resources and Life Sciences, Institute of Soil Physics and Rural Water Management, Vienna 1190, Austria.
Several groundwater quality investigations have been conducted in coastal regions that are commonly exposed to multiple anthropogenic stressors. Nonetheless, such studies remain challenging because they require focused-diagnostic approaches for a comprehensive understanding of groundwater contamination. Therefore, this study integrates a multi-tracer approach to acquire comprehensive information allowing for an improved understanding of the origins of groundwater contamination, the relative contribution of contaminants, and their biogeochemical cycling within a coastal groundwater system.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China.
Nitrate pollution in water bodies is a worldwide environmental problem, and identifying the sources of nitrate is of great significance to guarantee the sustainable use of water resources. A variety of water chemistry indicators and nitrate nitrogen and oxygen isotopes (N-NO and O-NO) were used to analyze the water chemistry characteristics of water bodies in Shiyan to identify the sources of nitrate in the water bodies and to calculate the contribution rate of nitrate from different pollution sources of the water bodies using the SIMMR model. The results showed that the hydrochemical types of surface water and groundwater in the study area were dominated by the HCO-Ca·Mg type, and the formation of nitrate in the water body was mainly affected by nitrification, with non-obvious denitrification.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
To explore the changes in groundwater hydrochemistry and its source influence in the low water level period of the southern oasis area of Gaochang District, Turpan City before and after the management of groundwater overexploitation, based on 12 groups of water samples in 2016 (three groups of unconfined water, nine groups of confined water) and 18 groups of water samples in 2023 (five groups of unconfined water, thirteen groups of confined water), mathematical statistics, hydrochemical diagraph, hydrogen and oxygen isotope means, and an absolute principle component-multiple linear regression (APCS-MLR) model were used to analyze the changes and sources of groundwater hydrochemistry. The results showed that due to the dynamic conditions of groundwater, the dominant cation changed from Na to Ca, and the anion changed from HCO to SO. The dominant cation of confined water changed from Ca to Na, and the dominant anion remained unchanged as SO.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
Tracing the source of nitrate is the key path to solve the problem of nitrogen pollution. However, the seasonal difference of nitrate sources in groundwater and surface water and its dynamic evolution process and mechanism in large fresh water lake area are still not clear. In this study, 126 water samples were collected from groundwater and surface water in China's largest fresh water lake (Poyang Lake) region from 2022 to 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!