The intracellular molecular mechanisms underlying the genotype of cortisol-producing adenoma (CPA) have not been fully determined. We analyzed gene expressions in CPA and the human adrenocortical cell line (HAC15 cells) with PRKACA mutation. Clustering analysis using a gene set associated with responses to cAMP revealed the possible differences between PRKACA mutant CPAs and GNAS and CTNNB1 mutant CPAs. The levels of STAR, CYP11A1, CYP17A1, CYP21A2, and FDX1 transcripts and cortisol levels per unit area in PRKACA mutant CPAs were significantly higher than those in GNAS mutant CPAs. PRKACA mutations led to an increase in steroidogenic enzyme expression and cortisol production in HAC15 cells. Transcriptome analysis revealed differences between PRKACA mutant CPAs and GNAS and CTNNB1 mutant CPAs. Cortisol production in PRKACA mutant CPAs is increased by the cAMP-PKA signaling pathway-mediated upregulation of steroidogenic enzymes transcription. The intracellular molecular mechanisms underlying these processes would be notably important in PRKACA mutant CPAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551059PMC
http://dx.doi.org/10.1016/j.mce.2021.111456DOI Listing

Publication Analysis

Top Keywords

mutant cpas
32
prkaca mutant
20
cortisol production
12
prkaca
8
prkaca mutations
8
intracellular molecular
8
molecular mechanisms
8
mechanisms underlying
8
revealed differences
8
differences prkaca
8

Similar Publications

Many polar organisms produce antifreeze proteins (AFPs) and ice-binding proteins (IBPs) to protect themselves from ice formation. As IBPs protect cells and organisms, the potential of IBPs as natural or biological cryoprotective agents (CPAs) for the cryopreservation of animal cells, such as oocytes and sperm, has been explored to increase the recovery rate after freezing-thawing. However, only a few IBPs have shown success in cryopreservation, possibly because of the presence of protein denaturants, such as dimethyl sulfoxide, alcohols, or ethylene glycol, in freezing buffer conditions, rendering the IBPs inactive.

View Article and Find Full Text PDF

The causes of adrenal Cushing's syndrome (CS) encompass a wide spectrum of adrenal cortisol proliferations that exhibit clinical and molecular heterogeneity. The aims of our study were to investigate whether clinical and molecular heterogeneity influences endothelial function and metabolic abnormalities in patients with cortisol-producing adenoma (CPA). We retrospectively enrolled 25 patients with CPA and 45 patients with essential hypertension (EH).

View Article and Find Full Text PDF

Association of DNA methylation with steroidogenic enzymes in Cushing's adenoma.

Endocr Relat Cancer

August 2022

Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.

DNA methylation and demethylation regulate the transcription of genes. DNA methylation-associated gene expression of adrenal steroidogenic enzymes may regulate cortisol production in cortisol-producing adenoma (CPA). We aimed to determine the DNA methylation levels of all genes encoding steroidogenic enzymes involved in CPA.

View Article and Find Full Text PDF

Background: An activating mutation (c.617A>C/p.Lys206Arg, L206R) in protein kinase cAMP-activated catalytic subunit alpha (PRKACA) has been reported in 35% to 65% of cases of cortisol-producing adenomas (CPAs).

View Article and Find Full Text PDF

Genotype-specific cortisol production associated with Cushing's syndrome adenoma with PRKACA mutations.

Mol Cell Endocrinol

December 2021

Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.

The intracellular molecular mechanisms underlying the genotype of cortisol-producing adenoma (CPA) have not been fully determined. We analyzed gene expressions in CPA and the human adrenocortical cell line (HAC15 cells) with PRKACA mutation. Clustering analysis using a gene set associated with responses to cAMP revealed the possible differences between PRKACA mutant CPAs and GNAS and CTNNB1 mutant CPAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!