In order to discover new therapeutically active agents a series of novel copper(II) complexes with 3,4-dihydro-2(1H)-quinoxalinones were synthesized. All complexes were characterized by IR and EPR spectroscopic techniques and examined for their cytotoxic effect on human cancer cell lines HeLa, LS174, A549 and normal fibroblasts (MRC-5). For further examination of the cytotoxic mechanisms of novel complexes, three of them were chosen for analysing their effects on the distribution of HeLa cells in the cell cycle phases. The results of the flow cytometry analysis suggest that tested complexes lead to time-dependent accumulation of the cells in S and G2/M phases. The strongest accumulation effect showed complex 2d after 48 h of incubation. Competitive experiments with ethidium bromide (EB) indicated that tested compound 2d have affinity to displace EB from the EB-DNA complex through intercalation. Also, the binding parameters values for 2d-BSA complex showed that a reversible 2d-BSA complex is formed and ligand 2d can be stored and carried by BSA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2021.109647DOI Listing

Publication Analysis

Top Keywords

novel copperii
8
copperii complexes
8
complexes 34-dihydro-21h-quinoxalinones
8
2d-bsa complex
8
complexes
5
antitumor activity
4
activity dna
4
dna bsa
4
bsa interactions
4
interactions novel
4

Similar Publications

Syntheses, structures and anti-cancer activities of Cu and Zn complexes containing 1,1'-[(3-fluoro-phen-yl)methyl-ene]bis-[3-(3-fluoro-phen-yl)imidazo[1,5-]pyridine].

Acta Crystallogr E Crystallogr Commun

January 2025

Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.

Two novel complexes, [Cu()Cl] and [Zn()Cl], were synthesized from 1,1'-[(3-fluoro-phen-yl)methyl-ene]bis-[3-(3-fluoro-phen-yl)imidazo[1,5-]pyridine] (), and copper(II) and zinc(II) chloride, respectively. The structures of these complexes were confirmed using ESI-MS, IR and H NMR spectra. The results reveal mononuclear structures in which the central metal atoms are coordinated by two N atoms from the imidazole rings and two Cl ligands.

View Article and Find Full Text PDF

Ten coordination compounds, [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)Cl] (C3), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)Cl] (), and [Cu(L)NO] (), containing pyridine derivatives of -methoxyphenyl-thiosemicarbazones were synthesized and characterized. The molecular structure of four compounds was investigated using single crystal X-ray diffraction. Spectral analysis techniques such as FT-IR, H NMR, C NMR, elemental analysis, and molar conductivity were used for all the synthesized compounds.

View Article and Find Full Text PDF

Copper-based nanoparticles (NPs) are highly valued for their wide-ranging applications, with particular significance in CO reduction. However current synthesis methods encounter challenges in scalability, batch-to-batch variation, and high energy costs. In this work, we describe a novel continuous flow synthesis approach performed at room temperature to help address these issues, producing spherical, colloidally stable copper(ii) oxide (CuO) NPs.

View Article and Find Full Text PDF

Copper(II) aromatic heterocyclic complexes of Gatifloxacin with multi-targeting capabilities for antibacterial therapy and combating antibiotic resistance.

Bioorg Chem

December 2024

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. Electronic address:

In recent years, the pace of novel antibiotic development has been relatively slow, intensifying the urgency of the antibiotic resistance issue. Consequently, scientists have turned their attention to enhancing antibiotic activity by coordinating antibiotics with metal elements. This study designs and synthesizes three novel antibacterial copper complexes based on Gatifloxacin.

View Article and Find Full Text PDF

In this study, we have prepared a novel bis-Schiff-base copper(ii) complex by modifying FeO with acetylacetone functionalities and subsequently forming a Schiff base with 2-picolylamine and CuCl through a template method. Immobilization of 2,4-pentanedione and its reaction with 2-picolylamine enabled the synthesis of 1,3-diketimines (HNacNac) as an anionic ligand. This unique design resulted in a tetradentate N coordination sphere for copper(ii) ion complexation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!