Mechanism of negative membrane curvature generation by I-BAR domains.

Structure

Department of Chemistry, City College of New York, New York, NY 10031, USA; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, NY, USA. Electronic address:

Published: December 2021

The membrane sculpting ability of BAR domains has been attributed to the intrinsic curvature of their banana-shaped dimeric structure. However, there is often a mismatch between this intrinsic curvature and the diameter of the membrane tubules generated. I-BAR domains are especially mysterious since they are almost flat but generate high negative membrane curvature. Here, we use atomistic implicit-solvent computer modeling to show that the membrane bending of the IRSp53 I-BAR domain is dictated by its higher oligomeric structure, whose curvature is completely unrelated to the intrinsic curvature of the dimer. Two other I-BARs give similar results, whereas a flat F-BAR sheet develops a concave membrane-binding interface, consistent with its observed positive membrane curvature generation. Laterally interacting helical spirals of I-BAR dimers on tube interiors are stable and have an enhanced binding energy that is sufficient for membrane bending to experimentally observed tubule diameters at a reasonable surface density.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642264PMC
http://dx.doi.org/10.1016/j.str.2021.07.010DOI Listing

Publication Analysis

Top Keywords

membrane curvature
12
intrinsic curvature
12
negative membrane
8
curvature generation
8
i-bar domains
8
membrane bending
8
membrane
7
curvature
7
mechanism negative
4
i-bar
4

Similar Publications

The tau protein misfolds in neurodegenerative diseases such as Alzheimer's disease (AD). These pathological tau aggregates are associated with neuronal membranes, but molecular structural information about how disease-like tau fibrils interact with the lipid membrane is scarce. Here, we use solid-state NMR to investigate the structure of a tau construct bearing four AD-relevant phospho-mimetic mutations (4E tau) with cholesterol-containing high-curvature lipid membranes, which mimic the membrane of synaptic vesicles in neurons.

View Article and Find Full Text PDF

MPicker: visualizing and picking membrane proteins for cryo-electron tomography.

Nat Commun

January 2025

Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China.

Advancements in cryo-electron tomography (cryoET) allow the structure of macromolecules to be determined in situ, which is crucial for studying membrane protein structures and their interactions in the cellular environment. However, membranes are often highly curved and have a strong contrast in cryoET tomograms, which masks the signals from membrane proteins. These factors pose difficulties in observing and revealing the structures of membrane proteins in situ.

View Article and Find Full Text PDF

Bacterial membrane vesicles (BMVs) are emerging as powerful natural nanoparticles with transformative potential in medicine and industry. Despite their promise, scaling up BMV production and ensuring stable isolation and storage remain formidable challenges that limit their broader application. Inspired by eukaryotic mechanisms of membrane curvature, we engineered DH5α to serve as a high-efficiency BMV factory.

View Article and Find Full Text PDF

Gramicidin A in Asymmetric Lipid Membranes.

Biomolecules

December 2024

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.

Gramicidin A is a natural antimicrobial peptide produced by . Its transmembrane dimer is a cation-selective ion channel. The channel is characterized by the average lifetime of the conducting state and the monomer-dimer equilibrium constant.

View Article and Find Full Text PDF

Unlabelled: Cytoplasmic proteins must recruit to membranes to function in processes such as endocytosis and cell division. Many of these proteins recognize not only the chemical structure of the membrane lipids, but the curvature of the surface, binding more strongly to more highly curved surfaces, or 'curvature sensing'. Curvature sensing by amphipathic helices is known to vary with membrane bending rigidity, but changes to lipid composition can simultaneously alter membrane thickness, spontaneous curvature, and leaflet symmetry, thus far preventing a systematic characterization of lipid composition on such curvature sensing through either experiment or simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!