AI Article Synopsis

  • Myelination is essential for healthy axon function and is influenced by glutamate signaling during neuronal activity.
  • Research using zebrafish models reveals that manipulating glutamate levels affects the number of oligodendrocyte lineage cells and myelin marker expression.
  • The study shows that both increasing glutamate receptor activity and blocking glutamate uptake promote myelination, suggesting potential therapeutic targets for demyelinating diseases.

Article Abstract

Myelination is crucial for the development and maintenance of axonal integrity, especially fast axonal action potential conduction. There is increasing evidence that glutamate signaling and release through neuronal activity modulates the myelination process. In this study, we examine the effect of manipulating glutamate signaling on myelination of oligodendrocyte (OL) lineage cells and their development in zebrafish (zf). We use the "intensity-based glutamate-sensing fluorescent reporter" (iGluSnFR) in the zf model (both sexes) to address the hypothesis that glutamate is implicated in regulation of myelinating OLs. Our results show that glial iGluSnFR expression significantly reduces OL lineage cell number and the expression of myelin markers in larvae (zfl) and adult brains. The specific glutamate receptor agonist, L-AP4, rescues this iGluSnFR effect by significantly increasing the expression of the myelin-related genes, plp1b and mbpa, and enhances myelination in L-AP4-injected zfl compared to controls. Furthermore, we demonstrate that degrading glutamate using Glutamat-Pyruvate Transaminase (GPT) or the blockade of glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC) significantly decreases myelin-related genes and drastically declines myelination in brain ventricle-injected zfl. Moreover, we found that myelin-specific ClaudinK (CldnK) and 36K protein expression is significantly decreased in iGluSnFR-expressing zfl and adult brains compared to controls. Taken together, this study confirms that glutamate signaling is directly required for the preservation of myelinating OLs and for the myelination process itself. These findings further suggest that glutamate signaling may provide novel targets to therapeutically boost remyelination in several demyelinating diseases of the CNS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.24940DOI Listing

Publication Analysis

Top Keywords

glutamate signaling
20
glutamate
8
myelination process
8
myelinating ols
8
zfl adult
8
adult brains
8
myelin-related genes
8
compared controls
8
myelination
6
signaling
5

Similar Publications

Article Synopsis
  • Diabetic kidney disease (DKD) is a major cause of kidney failure, largely due to damage in podocytes, which are essential for kidney function.
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key player in protecting cells from oxidative stress, making it a promising target for DKD therapies.
  • The study found that DDO-1039, a new Nrf2 activator, improved kidney health in diabetic mice by reducing podocyte injury, lowering blood sugar levels, and decreasing inflammation, endorsing its potential as a treatment for DKD.
View Article and Find Full Text PDF

Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments.

Pharmacol Ther

December 2024

Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.. Electronic address:

G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance.

View Article and Find Full Text PDF

Objective: The study investigates whether the expression and function of ENT1 can be regulated by inhibiting the JNK signaling pathway, thereby altering the levels of extracellular adenosine and glutamate in neurons, and subsequently affecting the progression of epilepsy.

Methods: The adult male SD rats were randomly divided into four groups: EP + SP600125 group, EP + DMSO group, EP group, and normal control group. The expression levels of ENT1, p-JNK, and JNK in the hippocampus of rats from each experimental group were detected using Western blotting technology.

View Article and Find Full Text PDF

GLR36 Mutation of Casuarina equisetifoli Is Associated With a Decreased JA Response to Insect Feeding by Lymantria xylina.

Plant Cell Environ

December 2024

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China.

Lymantria xylina is the most important defoliator, damaging the effective coastal windbreak tree species Casuarina equisetifolia. However, the underlying genetic mechanisms through which C. equisetifolia responds to L.

View Article and Find Full Text PDF

Synaptic modulation of glutamate in striatum of the YAC128 mouse model of Huntington disease.

Neurobiol Dis

December 2024

Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:

Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!