Humans routinely sit or lean against supporting surfaces and it is important to shape these surfaces to be comfortable and ergonomic. We give a method to design the geometric shape of rigid supporting surfaces to maximize the ergonomics of physically based contact between the surface and a deformable human. We model the soft deformable human using a layer of FEM deformable tissue surrounding a rigid core, with measured realistic elastic material properties, and large-deformation nonlinear analysis. We define a novel cost function to measure the ergonomics of contact between the human and the supporting surface. We give a stable and computationally efficient contact model that is differentiable with respect to the supporting surface shape. This makes it possible to optimize our ergonomic cost function using gradient-based optimizers. Our optimizer produces supporting surfaces superior to prior work on ergonomic shape design. Our examples include furniture, apparel and tools. We also validate our results by scanning a real human subject's foot and optimizing a shoe sole shape to maximize foot contact ergonomics. We 3D-print the optimized shoe sole, measure contact pressure using pressure sensors, and demonstrate that the real unoptimized and optimized pressure distributions qualitatively match those predicted by our simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2021.3112127 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The interaction between molybdenum carbide (MoC) nanoparticles and both flat and curved graphene surfaces, serving as models for carbon nanotubes, was investigated by means of density functional theory. A variety of MoC nanoparticles with different sizes and stoichiometries have been used to explore different adsorption sites and modes across models with different curvature degrees. On flat graphene, off-stoichiometric MoC featuring more low-coordinated Mo atoms exhibits stronger interaction and increased electron transfers from the carbide to the carbon substrate.
View Article and Find Full Text PDFJACC Clin Electrophysiol
December 2024
The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
Background: Conduction velocity (CV) is a measure of the health of myocardial tissue. It can be measured by taking differences in local activation times from intracardiac electrodes. Several factors introduce error into the measurement, among which ignoring the 3-dimensional aspect is a major detriment.
View Article and Find Full Text PDFJ Dent
January 2025
Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032, Zurich, Switzerland.
Objectives: To evaluate clinical outcomes (restoration survival, technical and biological complications), and patient-reported outcome measures (PROMs) of full mouth rehabilitation with minimally invasive glass-ceramic restorations after up to 12 years of clinical service.
Materials And Methods: Twenty individuals (12 females, 8 males) received full-mouth rehabilitation with minimally invasive tooth-supported glass-ceramic restorations during the years 2009 - 2017 and agreed to participate in a follow-up visit. Full dental and periodontal examinations were completed, and the restorations were evaluated according to United States Public Health Service (USPHS) criteria.
Sci Total Environ
January 2025
Nexom, Winnipeg, Manitoba R2J 3R8, Canada.
This pilot-scale study investigated nitrifying moving bed biofilm reactors (MBBRs) in a post-lagoon treatment setup over two years to evaluate the impact of seasonal ammonia fluctuations on winter nitrification. In Year 2, reactors without fall ammonia starvation achieved significantly higher winter ammonia removal (97.2 ± 1.
View Article and Find Full Text PDFArthropod Struct Dev
January 2025
Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) - University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy.
Rectal or cryptonephridial complexes have evolved repeatedly in arthropods, including in beetles where they occur in ∼190,000 species of Cucujiformia + Bostrichoidea, and Lepidoptera where they occur in ∼160,000 species. Sections of the Malpighian/renal tubules coat the outer surface of the rectum, acting as powerful recycling systems of the gut contents, recovering water and specific solutes. There are hints that a rectal complex evolved independently within another beetle group, Scarabaeoidea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!