Surface-enhanced Raman scattering (SERS) probes offer considerable opportunities in label-based biosensing and analysis. However, achieving specific and reproducible performance, where low detection limits are needed in complex media, remains a challenge. Herein, we present a general strategy employing gold nanorod SERS probes and rationally designed surface chemistry involving protein resistant layers and antibodies to allow for the selective detection of species in complex media. By utilizing the ability of gold nanorods for selective surface modification, Raman reporters (4-mercaptobenzoic acid) were attached to the tips. Importantly, the sides of the nanorods were modified using a mixed layer of two different length stabilizing ligands (carboxyl-terminated oligo ethylene glycols) to ensure colloidal stability, while antibodies were attached to the stabilizing ligands. The nanoparticle interfacial design improves the colloidal stability, unlocks the capability of the probes for targeting biomolecules in complex matrices, and gives the probes the high SERS efficiency. The utility of this probe is demonstrated herein the detection of bacteria at the single bacterium level in complex food matrices using an anti- IgG antibody-conjugated probe. The modular nature of the surface chemistry enables the SERS probes to be employed with a molecularly diverse range of biorecognition species (, antibodies and peptides) for many different analytes, thus opening up new opportunities for efficient biosensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c02557 | DOI Listing |
Sci Rep
January 2025
Fischell Department of Bioengineering, University of Maryland, College Park, USA.
The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, ITALY.
Ammonia electrosynthesis through the lithium-mediated approach has recently reached promising results towards high activity and selectivity in aprotic media, reaching high Faradaic efficiency (FE) values and NH3 production rates. To fasten the comprehension and optimization of the complex lithium-mediated nitrogen reduction system, for the first time a multivariate approach is proposed as a powerful tool to reduce the number of experiments in comparison with the classical one-factor-at-a-time approach. Doehlert design and surface response methodology are employed to optimize the electrolyte composition for a batch autoclaved cell.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.
View Article and Find Full Text PDFReprod Biol
January 2025
Department of Biology, Edge Hill University, L39 4QP, UK. Electronic address:
Mechanisms controlling the process and patterning of blood vessel development in the placenta remain largely unknown. The close physical proximity of early blood vessels observed in the placenta and the cytotrophoblast, as well as the reported production of vasculogenic growth factors by the latter, suggests that signalling between these two niches may be important. Here, we have developed an in vitro model to address the hypothesis that the cytotrophoblast, by the secretion of soluble factors, drives differentiation of resident sub-trophoblastic mesenchymal stem cells (MSCs) along a vascular lineage, thereby establishing feto-placental circulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!