Protection of the central nervous system (CNS) and cerebral homeostasis depend upon the blood-brain barrier (BBB) functions and permeability. BBB restrictive permeability hinders drug delivery for the treatment of several neurodegenerative diseases and brain tumors. Several in vivo animal models and in vitro systems have been developed to understand the BBB complex mechanisms and aid in the design of improved therapeutic strategies. However, there are still many limitations that should be addressed to achieve the structural and chemical environment of a human BBB. We developed a microfluidic-based model of the neurovascular unit. A monolayer of human cerebral endothelial cells (hCMEC-D3) was grown and cocultured with human brain microvascular pericytes (hBMVPC), and human induced pluripotent stem cells differentiated into astrocytes (hiPSC-AC) and neurons (hiPSC-N). To visualize the physiological morphology of each cell type, we used fluorescent cell-specific markers and confocal microscopy. Permeation of fluorescent solutes with different molecular weights was measured to demonstrate that the developed BBB was selectively permeable as a functional barrier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1693-2_7 | DOI Listing |
J Clin Med
January 2025
Orthopedic and Traumatology Unit, Arnaldo Pugliese Hospital, Azienda Ospedaliero-Universitaria "Renato Dulbecco" di Catanzaro, Viale Pio X, 88100 Catanzaro, Italy.
: Supracondylar humerus fractures (SCHFs) are the most common pediatric elbow injuries and often require surgical intervention. Despite guidelines, optimal timing for surgical management, particularly for cases without neurovascular compromise, remains unclear. This study evaluates the influence of surgical timing on short-term outcomes, focusing on fracture reduction quality and surgical parameters.
View Article and Find Full Text PDFCells
December 2024
Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China.
Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.
Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.
Neuron
January 2025
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. Electronic address:
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels.
View Article and Find Full Text PDFNeurocrit Care
January 2025
Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.
Background: Neurovascular coupling (NVC) refers to the process of aligning cerebral blood flow with neuronal metabolic demand. This study explores the potential of contralateral NVC-linking neural electrical activity on the stroke side with cerebral blood flow velocity (CBFV) on the contralesional side-as a marker of physiological function of the brain. Our aim was to examine the association between contralateral NVC and neurological outcomes in patients with ischemic stroke following endovascular thrombectomy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!