The transmission of bloodborne viruses through transfusion remains a major blood supply-related safety concern, with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) being the most important pathogens in this context. Real-time bioluminescent pyrophosphate testing has been developed as a means of readily detecting bacterial cells within particular sample types without requiring the use of expensive or complex instrumentation. The sensitivity of this approach, however, is often limited such that it is not compatible with many potential applications. In this study, we sought to overcome the limitations of this pyrophosphate bioluminescent assay format by using 2-deoxyadenosine-5-(α-thio)-triphosphate (dATPαS) in place of dATP for PCR amplification, thereby dramatically reducing background signal levels. We leveraged this combination PCR and bioluminescent pyrophosphate assay approach to facilitate HBV detection. This assay yielded a limit of detection of 500 copies/mL, making it more sensitive than traditional bioluminescent assays, about 1000 times more sensitive than that of PCR product analysis by agarose gel electrophoresis, and roughly as sensitive as qPCR as a means of detecting viral DNA. We then used this assay to analyze 100 serum samples, with qPCR being used for result validation. The assay required 100 min to complete, and was able to detect as few as 500 copies/mL of viral DNA. Overall, our approach was rapid, sensitive, and simple, enabling users to readily detect HBV in a reliable and efficient manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-021-03655-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!