Two In-based organic-inorganic hybrid compounds with reversible phase transition derived from the order-disorder changes of cations or anions.

Dalton Trans

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.

Published: September 2021

AI Article Synopsis

  • Solid-state phase transition materials exhibit notable physical properties like thermal, dielectric, and ferroelectric characteristics, attracting significant attention in research.
  • Two specific hybrid compounds, (CHCHCHNH)[InBr(HO)] (1) and [(CH)N][InCl] (2), show reversible phase transitions and distinct dielectric responses, with transition temperatures of 167 K for 1 and 351 K for 2.
  • The phase transitions are linked to order-disorder changes in their respective components: organic cations in compound 1 and [InCl] anions in compound 2, highlighting their potential for deeper exploration in hybrid materials.

Article Abstract

Solid-state phase transition materials have received extraordinary interest due to their rich physical properties, such as thermal, dielectric, and ferroelectric properties. Here, two In-based organic-inorganic hybrid compounds, (CHCHCHNH)[InBr(HO)] (1) and [(CH)N][InCl] (2), both display reversible phase transition and dielectric response. Differential scanning calorimetry measurements indicate that the phase transition temperatures () of 1 and 2 are 167 K and 351 K, respectively. Moreover, structural analyses disclose that the phase transition of 1 can be attributed to the order-disorder changes of phenethylammonium organic cations whereas the phase transition of 2 is caused by the order-disorder changes of [InCl] anions. The phase transitions of In-based organic-inorganic hybrid compounds can be driven by the order-disorder changes of cations or anions. Therefore, the system of In-based organic-inorganic hybrid compounds is very suitable for exploring organic-inorganic hybrid phase transition materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt01935jDOI Listing

Publication Analysis

Top Keywords

phase transition
28
organic-inorganic hybrid
20
in-based organic-inorganic
16
hybrid compounds
16
order-disorder changes
16
phase
8
reversible phase
8
changes cations
8
cations anions
8
transition materials
8

Similar Publications

miRNA Expression Profile in Primary Limbal Epithelial Cells of Aniridia Patients.

Invest Ophthalmol Vis Sci

January 2025

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany.

Purpose: This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia.

Methods: Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays.

View Article and Find Full Text PDF

IDH-mutant low-grade gliomas (LGGs) are slow-growing brain tumors that frequently progress to aggressive high-grade gliomas that have dismal outcomes. In a recent study, Wu and colleagues provide critical insights into the mechanisms underlying malignant progression by analyzing single-cell gene expression and chromatin accessibility across different tumor grades. Their findings support a two-phase model: in early stages, tumors are primarily driven by oligodendrocyte precursor-like cells and epigenetic alterations that silence tumor suppressors like CDKN2A and activate oncogenes such as PDGFRA.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is associated with sleep disturbances. Moreover, individuals with sleep disturbances have been reported to have a higher risk for developing AD. The measurement of sleep behavior therefore opens the opportunity for a potential digital biomarker of AD.

View Article and Find Full Text PDF

Background: Recent technological advancements have revolutionized our approach to healthcare, enabling us to harness the potential of smartphones and wearables to collect data that can be used to characterize Alzheimer's disease (AD) heterogeneity and to develop digital biomarkers. Our focus is to create comprehensive cross-domain digital datasets and establish an infrastructure that allows for seamless data sharing. Central to accelerating the potential of digital biomarkers for more accurate and early detection is privacy-protecting data access, which when combined with deep molecular phenotyping, will enhance our understanding of the biological mechanisms underlying clinical expression.

View Article and Find Full Text PDF

Phase transitions in chromatin: Mesoscopic and mean-field approaches.

J Chem Phys

January 2025

CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.

By means of a minimal physical model, we investigate the interplay of two phase transitions at play in chromatin organization: (1) liquid-liquid phase separation within the fluid solvating chromatin, resulting in the formation of biocondensates; and (2) the coil-globule crossover of the chromatin fiber, which drives the condensation or extension of the chain. In our model, a species representing a domain of chromatin is embedded in a binary fluid. This fluid phase separates to form a droplet rich in a macromolecule (B).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!