Non-enzymatic glucose sensors based on metal oxides are receiving remarkable attention owing to their outstanding characteristics of being easy-to use, low cost, and reusability. However, the disadvantage of weak anti-interference associated with poor selectivity significantly restricts their applicability. Herein, we report a two-step fabrication of nanosized CuO encapsulated Ni/Co bimetal Prussian blue (PB) with a typical core-shell structure, which can be efficiently used for non-enzymatic glucose detection, ascribing to the permeability and abundant active sites of out-shelled crystalline porous Ni/Co PB and the high catalytic activity and conductivity of embedded CuO nanoparticles, afforded by their mutual synergistic interactions. The glassy carbon electrode modified with the hybrid of the CuO-encapsulated Ni/Co PB (simplified as the Ni/Co-PB/CuO/GCE electrode) exhibited a high glucose sensitivity of 600 μA mM cm with a low detection limit of 0.69 μM (S/N = 3), a fast response time (less than 3 s), and excellent long-term stability. In addition, the CuO-encapsulated Ni/Co PB showed favorable anti-interference ability in the presence of ascorbic acid (AA), L-lysine (Lys), dopamine (DA), cysteine (Cys), dopamine (DA), and KCl interferences. The reusability and long-term stability, as well as the practicability of the Ni/Co-PB/CuO/GCE sensing electrode verified by testing real serum samples were also investigated, and the experimental results demonstrated the applicability of the core-shell NiCo-PB/CuO based flexible electrochemical sensor for non-enzymatic glucose sensing in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt02361f | DOI Listing |
Mikrochim Acta
January 2025
Indian Institute of Technology (BHU), Varanasi, 221005, India.
In the modern age, half of the population is facing various chronic illnesses due to glucose maintenance in the body, major causes of fatality and inefficiency. The early identification of glucose plays a crucial role in medical treatment and the food industry, particularly in diabetes diagnosis. In the past few years, non-enzymatic electrochemical glucose sensors have received a lot of interest for their ability to identify glucose levels accurately.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Electrical Engineering, Feng Chia University, Taichung, 407802, Taiwan.
This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance.
View Article and Find Full Text PDFFood Chem X
January 2025
Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
The accurate quantification of glycemic index (GI) remains crucial for diabetes management, yet current methodologies are constrained by resource intensiveness and methodological limitations. digestion models face challenges in replicating the dynamic conditions of the human gastrointestinal tract, such as enzyme variability and multi-time point analysis, leading to suboptimal predictive accuracy. This review proposes an integrated technological framework combining non-enzymatic electrochemical sensing with artificial intelligence to revolutionize GI assessment.
View Article and Find Full Text PDFTalanta
January 2025
Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France.
The non-enzymatic electrochemical detection of glucose by direct oxidation using electrodes modified with suitable electrocatalysts is now well-established. However, it most often requires highly alkaline media, limiting dramatically the use of such electrodes at neutral pH. This is notably the case of Ni-based electrodes.
View Article and Find Full Text PDFFoods
January 2025
College of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
Suitable planting systems are critical for the physicochemical and bioactivities of strawberry ( Duch.) polysaccharides (SPs). In this study, SPs were prepared through hot water extraction, and the differences in physicochemical characteristics and bioactivities between SPs derived from elevated matrix soilless planting strawberries (EP-SP) and those from and conventional soil planting strawberries (GP-SP) were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!