Lake Sevan is a meso-eutrophic water body, which was severely impacted by anthropogenic level decrease, pollution and eutrophication during the last century. Starting in the 1970s, these processes resulted in the formation of an oxygen-depleted hypolimnion during summer-autumn stratification of the lake. In this work, we demonstrate for the first time that eutrophication of the lake leads not only to the full depletion of oxygen and nitrate in the hypolimnion but as well to the presence of sulfate-reducing microorganisms and toxic hydrogen sulfide. Concentrations of hydrogen sulfide in the hypolimnion of Major and Minor Sevan in October were as high as 9 and 39 μM, respectively. In October 2019, 66 % of lake's bottom was covered by sulfidic waters, while the fraction of sulfidic water volume reached 19 %. Values of δS for hypolimnetic sulfide are lower by only 7-12 ‰ compared to epilimnetic sulfate, while δS values of sulfide are similar to the δS values of sulfate. These isotopic fingerprints are not consistent with microbial sulfate reduction as the sole source of hydrogen sulfide in the hypolimnion. We attribute the formation of a sulfidic deep-water layer to a combination of microbial sulfate reduction in the water column and diffusion of hydrogen sulfide from the sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10256016.2021.1970548 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, Chemistry, 800 Dongchuan Road, Minhang, 200240, Shanghai, CHINA.
Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear.
View Article and Find Full Text PDFMol Plant
January 2025
State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China. Electronic address:
Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, the synthesis mechanism of H2S and its role in enhancing rice resistance to Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany.
This study explores the computational fluid dynamics (CFD) simulation of oxygen (O) and hydrogen sulfide (HS) mass transfer in a highly turbulent stirring tank. Using the open-source software OpenFOAM, we extended three-dimensional two-phase flow solvers with a rotating mesh feature to model the mass transfer processes between the water and air phases. The accuracy of these simulations was validated against experimental data, demonstrating a strong agreement in the mass transfer rates of HS and O.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi 110007, India. Electronic address:
Urban air pollution has been a global challenge world-wide. While urban vegetation or forest modelling can be useful in reducing the toxicities of the atmospheric gases by their absorption, the surge in gaseous pollutants negatively affects plant growth, thereby altering photosynthetic efficiency and harvest index. The present review analyses our current understanding of the toxic and beneficial effects of atmospheric nitrogen oxides (NO), hydrogen sulphide (HS) and carbon monoxide (CO) on plant growth and metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!