Multiple effective vaccines are currently being deployed to combat the COVID-19 pandemic, and are viewed as the major factor in marked reductions of disease burden in regions with moderate to high vaccination coverage. The effectiveness of COVID-19 vaccination programs is, however, significantly threatened by the emergence of new SARS-COV-2 variants that, in addition to being more transmissible than the wild-type (original) strain, may at least partially evade existing vaccines. A two-strain (one wild-type, one variant) and two-group (vaccinated or otherwise) mechanistic mathematical model is designed and used to assess the impact of the vaccine-induced cross-protective efficacy on the spread the COVID-19 pandemic in the United States. Rigorous analysis of the model shows that, in the absence of any co-circulating SARS-CoV-2 variant, the vaccine-derived herd immunity threshold needed to eliminate the wild-type strain can be achieved if 59% of the US population is fully-vaccinated with either the Pfizer or Moderna vaccine. This threshold increases to 76% if the wild-type strain is co-circulating with the Alpha variant (a SARS-CoV-2 variant that is 56% more transmissible than the wild-type strain). If the wild-type strain is co-circulating with the Delta variant (which is estimated to be 100% more transmissible than the wild-type strain), up to 82% of the US population needs to be vaccinated with either of the aforementioned vaccines to achieve the vaccine-derived herd immunity. Global sensitivity analysis of the model reveal the following four parameters as the most influential in driving the value of the reproduction number of the variant strain (hence, COVID-19 dynamics) in the US: (a) the infectiousness of the co-circulating SARS-CoV-2 variant, (b) the proportion of individuals fully vaccinated (using Pfizer or Moderna vaccine) against the wild-type strain, (c) the cross-protective efficacy the vaccines offer against the variant strain and (d) the modification parameter accounting for the reduced infectiousness of fully-vaccinated individuals experiencing breakthrough infection. Specifically, numerical simulations of the model show that future waves or surges of the COVID-19 pandemic can be prevented in the US if the two vaccines offer moderate level of cross-protection against the variant (at least 67%). This study further suggests that a new SARS-CoV-2 variant can cause a significant disease surge in the US if (i) the vaccine coverage against the wild-type strain is low (roughly <66) (ii) the variant is much more transmissible (e.g., 100% more transmissible), than the wild-type strain, or (iii) the level of cross-protection offered by the vaccine is relatively low (e.g., less than 50%). A new SARS-CoV-2 variant will not cause such surge in the US if it is only moderately more transmissible (e.g., the Alpha variant, which is 56 more transmissible) than the wild-type strain, at least 66% of the population of the US is fully vaccinated, and the three vaccines being deployed in the US (Pfizer, Moderna, and Johnson Johnson) offer a moderate level of cross-protection against the variant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426325 | PMC |
http://dx.doi.org/10.1016/j.idm.2021.08.008 | DOI Listing |
Microb Pathog
December 2024
Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, China. Electronic address:
The autophagy pathway plays a crucial role in resistance to bacterial infection in the host. Salmonella enterica serovar Typhi (S. Typhi), a human restricted pathogen, causes a systemic infection known as typhoid fever.
View Article and Find Full Text PDFVirol J
December 2024
Virology Department, Croatian Veterinary Institute, Zagreb, Croatia.
Background: Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition.
View Article and Find Full Text PDFLab Anim Res
December 2024
Department of Experimental Animal Research, Biomedical Research Institute, Seoul National Univ. Hospital, Seoul, Korea.
Background: Genetically immunodeficient mice lacking Il2rg and Rag2 genes have been widely utilized in the field of biomedical research. However, immunodeficient rats, which offer the advantage of larger size, have not been as extensively used to date. Recently, Severe Combined Immunodeficiency (SCID) rats were generated using CRISPR/Cas9 system, targeting Il2rg and Rag2 in National BioResource Project in Japan.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand. Electronic address:
Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!