Constraints imposed due to the cameo of the novel corona virus has abruptly changed the operative mode of medical sciences. Most of the hospitals have migrated towards the telemedicine mode of services for the non-invasive and non-emergency patients during the COVID-19 time. The advent of telemedicine services has remotely rendered health services to different types of patients from their isolates. Here, the patients' medical data has to be transmitted to different physicians/doctors in a safe manner. Such data are to be secured with a view to restore its privacy clause. Cardio vascular diseases (CVDs) are a kind of cardiac disease related to blockage of arteries and veins. Cardiac patients are more susceptible to the COVID-19 attacks. They are advised to be treated though cardiac telemedicine services. This paper presents an intelligent and secured transmission of clinical cardiac reports of the patients through recurrence relation based session key. Such reports were made through the following confusion matrix operations. The beauty of this technique is that confusion matrices are transferred to specified number of cardiologists with additional secret shares encapsulation. The case of robustness checking, transparency and cryptographic engineering has been tested under different set of inputs. The total cryptographic time observed here was noted as  ms, 3 ms , ms, ms, ms, and 660.16 ms, which is acceptable when compared with other classical techniques. The estimation of correlation coefficient in proposed variables has been recorded as -  . Different types of result and its analysis proves the efficiency of the proposed technique. It will provide more security in medical data transmission, especially in the needy hours of COVID-19 pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426590PMC
http://dx.doi.org/10.1007/s11277-021-09045-3DOI Listing

Publication Analysis

Top Keywords

cryptographic engineering
8
relation based
8
based session
8
session key
8
telemedicine services
8
medical data
8
covid-19
4
engineering covid-19
4
telemedicine
4
covid-19 telemedicine
4

Similar Publications

The vast interconnection of resource-constrained devices and the immense amount of data exchange in the Internet of Things (IoT) environment resulted in the resurgence of various security threats. This resource-constrained environment of IoT makes data security a very challenging task. Recent trends in integrating lightweight cryptographic algorithms have significantly improved data security in the IoT without affecting performance.

View Article and Find Full Text PDF

Vehicle-to-everything (V2X) communication has many benefits. It improves fuel efficiency, road safety, and traffic management. But it raises privacy and security concerns.

View Article and Find Full Text PDF

In the era of the Internet of Things (IoT), the transmission of medical reports in the form of scan images for collaborative diagnosis is vital for any telemedicine network. In this context, ensuring secure transmission and communication is necessary to protect medical data to maintain privacy. To address such privacy concerns and secure medical images against cyberattacks, this research presents a robust hybrid encryption framework that integrates quantum, and classical cryptographic methods.

View Article and Find Full Text PDF

Chiroptical Synaptic Perovskite Memristor as Reconfigurable Physical Unclonable Functions.

ACS Nano

December 2024

Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

Physical unclonable functions (PUFs), often referred to as digital fingerprints, are emerging as critical elements in enhancing hardware security and encryption. While significant progress has been made in developing optical and memory-based PUFs, integrating reconfigurability with sensitivity to circularly polarized light (CPL) remains largely unexplored. Here, we present a chiroptical synaptic memristor (CSM) as a reconfigurable PUF, leveraging a two-dimensional organic-inorganic halide chiral perovskite.

View Article and Find Full Text PDF

The increasing popularity and prevalence of Internet of Things (IoT) applications have led to the widespread use of IoT devices. These devices gather information from their environment and send it across a network. IoT devices are unreliable due to their susceptibility to defect that arise intentionally or spontaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!