The progress of the SARS-CoV-2 pandemic requires the design of large-scale, cost-effective testing programs. Pooling samples provides a solution if the tests are sensitive enough. In this regard, the use of the gold standard, RT-qPCR, raises some concerns. Recently, droplet digital PCR (ddPCR) was shown to be 10-100 times more sensitive than RT-qPCR, making it more suitable for pooling. Furthermore, ddPCR quantifies the RNA content directly, a feature that, as we show, can be used to identify nonviable samples in pools. Cost-effective strategies require the definition of efficient deconvolution and re-testing procedures. In this paper we analyze the practical implementation of an efficient hierarchical pooling strategy for which we have recently derived the optimal, determining the best ways to proceed when there are impediments for the use of the absolute optimum or when multiple pools are tested simultaneously and there are restrictions on the throughput time. We also show how the ddPCR RNA quantification and the nested nature of the strategy can be combined to perform self-consistency tests for a better identification of infected individuals and nonviable samples. The studies are useful to those considering pool testing for the identification of infected individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438083 | PMC |
http://dx.doi.org/10.1038/s41598-021-97534-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!