Gene co-expression network analysis in zebrafish reveals chemical class specific modules.

BMC Genomics

Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, 28645 East Highway 34, Oregon State University, Corvallis, OR, 97331, USA.

Published: September 2021

Background: Zebrafish is a popular animal model used for high-throughput screening of chemical hazards, however, investigations of transcriptomic mechanisms of toxicity are still needed. Here, our goal was to identify genes and biological pathways that Aryl Hydrocarbon Receptor 2 (AHR2) Activators and flame retardant chemicals (FRCs) alter in developing zebrafish. Taking advantage of a compendium of phenotypically-anchored RNA sequencing data collected from 48-h post fertilization (hpf) zebrafish, we inferred a co-expression network that grouped genes based on their transcriptional response.

Results: Genes responding to the FRCs and AHR2 Activators localized to distinct regions of the network, with FRCs inducing a broader response related to neurobehavior. AHR2 Activators centered in one region related to chemical stress responses. We also discovered several highly co-expressed genes in this module, including cyp1a, and we subsequently show that these genes are definitively within the AHR2 signaling pathway. Systematic removal of the two chemical types from the data, and analysis of network changes identified neurogenesis associated with FRCs, and regulation of vascular development associated with both chemical classes. We also identified highly connected genes responding specifically to each class that are potential biomarkers of exposure.

Conclusions: Overall, we created the first zebrafish chemical-specific gene co-expression network illuminating how chemicals alter the transcriptome relative to each other. In addition to our conclusions regarding FRCs and AHR2 Activators, our network can be leveraged by other studies investigating chemical mechanisms of toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438978PMC
http://dx.doi.org/10.1186/s12864-021-07940-4DOI Listing

Publication Analysis

Top Keywords

ahr2 activators
16
co-expression network
12
gene co-expression
8
mechanisms toxicity
8
genes responding
8
frcs ahr2
8
network
6
chemical
6
genes
6
zebrafish
5

Similar Publications

Polycyclic aromatic hydrocarbons (PAHs) are a diverse class of chemicals that occur in complex mixtures including parent and substituted PAHs. To understand the hazard posed by complex environmental PAH mixtures, we must first understand the structural drivers of activity and mode of action of individual PAHs. Understanding the toxicity of alkylated PAHs is important as they often occur in higher abundance in environmental matrices and can be more biologically active than their parent compounds.

View Article and Find Full Text PDF

P and AHR-CYP1A1 Signaling Crosstalk in an Injury-Induced Zebrafish Inflammation Model.

Pharmaceuticals (Basel)

August 2024

Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05585-000, Brazil.

Aryl Hydrocarbon Receptor (AHR) signaling is crucial for regulating the biotransformation of xenobiotics and physiological processes like inflammation and immunity. Meanwhile, Peptide (P), a promising anti-inflammatory candidate from toadfish venom, demonstrates therapeutic effects through immunomodulation. However, its influence on AHR signaling remains unexplored.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence.

Toxicol Sci

November 2024

Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States.

Article Synopsis
  • Polycyclic aromatic hydrocarbons (PAHs) are diverse environmental compounds known for their varying toxic effects, often activating the aryl hydrocarbon receptor (AHR) and influencing gene expression, but their mechanisms can differ.
  • The study specifically examined retene, which causes developmental toxicity in zebrafish by activating Ahr2 through its metabolites, rather than directly activating the AHR.
  • Research found that the cyp1a enzyme plays a key role in the toxicity of retene, with cyp1a-null zebrafish showing heightened sensitivity, while exposure timing and metabolite presence were critical for understanding the toxicity's onset.
View Article and Find Full Text PDF

Quantitative adverse outcome pathways (qAOPs) describe the response-response relationships that link the magnitude and/or duration of chemical interaction with a specific molecular target to the probability and/or severity of the resulting apical-level toxicity of regulatory relevance. The present study developed the first qAOP for latent toxicities showing that early life exposure adversely affects health at adulthood. Specifically, a qAOP for embryonic activation of the aryl hydrocarbon receptor 2 (AHR2) of fishes by polycyclic aromatic hydrocarbons (PAHs) leading to decreased fecundity of females at adulthood was developed by building on existing qAOPs for (1) activation of the AHR leading to early life mortality in birds and fishes, and (2) inhibition of cytochrome P450 aromatase activity leading to decreased fecundity in fishes.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a wide range of biological and toxicological responses. While largely studied in ligand-activated toxicant responses, AHR also plays important roles in endogenous physiological processes. We leveraged single cell sequencing and an AHR2 knockout zebrafish line to investigate the role of AHR2 in regulating hematopoiesis (production and differentiation of red and white blood cells from hematopoietic stem cells).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!