Selective Electrochemical Oxygenation of Alkylarenes to Carbonyls.

Org Lett

Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China.

Published: October 2021

An efficient electrochemical method for benzylic C(sp)-H bond oxidation has been developed. A variety of methylarenes, methylheteroarenes, and benzylic (hetero)methylenes could be converted into the desired aryl aldehydes and aryl ketones in moderate to excellent yields in an undivided cell, using O as the oxygen source and lutidinium perchlorate as an electrolyte. On the basis of cyclic voltammetry studies, O labeling experiments, and radical trapping experiments, a possible single-electron transfer mechanism has been proposed for the electrooxidation reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.1c02651DOI Listing

Publication Analysis

Top Keywords

selective electrochemical
4
electrochemical oxygenation
4
oxygenation alkylarenes
4
alkylarenes carbonyls
4
carbonyls efficient
4
efficient electrochemical
4
electrochemical method
4
method benzylic
4
benzylic csp-h
4
csp-h bond
4

Similar Publications

Fast response solid electrolyte oxygen sensors with porous thin film electrodes.

Rev Sci Instrum

January 2025

High Enthalpy Flow Diagnostics Group (HEFDiG), Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany.

A novel solid electrolyte sensor with considerably improved response times is presented. The new so-called eFIPEX [etched flux (Φ) probe experiment] is based on the FIPEX [flux (Φ) probe experiment] sensor applied for the measurement of molecular and atomic oxygen concentrations. A main application is the measurement of atmospheric atomic oxygen aboard sounding rockets up to altitudes of 250 km.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Instituto de Salud Carlos III, Madrid, Madrid, Spain.

Background: Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and the leading cause of dementia in the elderly. New approaches to study AD are still needed to identify and validate blood-based diagnostic biomarkers that could be useful for its early diagnosis. Circulating autoantibodies (AAbs) and their target proteins (autoantigens) are promising candidate biomarkers to aid in AD early diagnosis.

View Article and Find Full Text PDF

High Selectivity Fluorescence and Electrochemical Dual-Mode Detection of Glutathione in the Serum of Parkinson's Disease Model Mice and Humans.

Anal Chem

January 2025

Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selectively determining GSH using a single probe.

View Article and Find Full Text PDF

Despite the various benefits of chlorpromazine, its misuse and overdose may lead to severe side effects, therefore, creating a user-friendly point-of-care device for monitoring the levels of chlorpromazine drug to manage the potential side effects and ensure the effective and safe use of the medication is highly desired. In this report, we have demonstrated a simple and scalable manufacturing process for the development of a 3D-printed conducting microneedle array-based electrochemical point-of-care device for the minimally invasive sensing of chlorpromazine. We used an inkjet printer to print the carbon and silver ink onto a customized 3D-printed ultrasharp microneedle array for the preparation of counter, working, and reference electrodes.

View Article and Find Full Text PDF

Electrocatalytic Mapping of Metal Fatigue with Persistent Slip Bands.

J Am Chem Soc

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!