The posterior distribution (PD) of random parameters in a distributed parameter-based population model for biosensor measured transdermal alcohol is estimated. The output of the model is transdermal alcohol concentration (TAC), which, via linear semigroup theory can be expressed as the convolution of blood or breath alcohol concentration (BAC or BrAC) with a filter that depends on the individual participant or subject, the biosensor hardware itself, and environmental conditions, all of which can be considered to be random under the presented framework. The distribution of the input to the model, the BAC or BrAC, is also sequentially estimated. A Bayesian approach is used to estimate the PD of the parameters conditioned on the population sample's measured BrAC and TAC. We then use the PD for the parameters together with a weak form of the forward random diffusion model to deconvolve an individual subject's BrAC conditioned on their measured TAC. Priors for the model are obtained from simultaneous temporal population observations of BrAC and TAC via deterministic or statistical methods. The requisite computations require finite dimensional approximation of the underlying state equation, which is achieved through standard finite element (i.e., Galerkin) techniques. The posteriors yield credible regions, which remove the need to calibrate the model to every individual, every sensor, and various environmental conditions. Consistency of the Bayesian estimators and convergence in distribution of the PDs computed based on the finite element model to those based on the underlying infinite dimensional model are established. Results of human subject data-based numerical studies demonstrating the efficacy of the approach are presented and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917818PMC
http://dx.doi.org/10.3934/mbe.2021335DOI Listing

Publication Analysis

Top Keywords

alcohol concentration
12
transdermal alcohol
12
breath alcohol
8
biosensor measured
8
measured transdermal
8
bayesian approach
8
model
8
bac brac
8
environmental conditions
8
brac tac
8

Similar Publications

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Despite their potential risks to human health and the environment at ng/L to μg/L concentrations, there has been relatively little effort to measure trace organic compounds (TOrCs) in surface waters of Central America. The concentrations of eighteen TOrCs detected at eleven surface water sites in the Lempa River basin of El Salvador and four sources of drinking water for the cities of San Salvador, Antiguo Cuscatlán, Soyapango, and Santa Tecla are reported here. All samples were analyzed via liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.

View Article and Find Full Text PDF

Introduction: Substance use disorders, particularly alcohol use disorders, represent a significant public health problem, with adolescents particularly vulnerable to their adverse effects. This study examined the possible anxiolytic and antidepressant effects of biotin, a crucial vitamin for brain function, in attenuating the behavioral and neurobiological changes associated with alcohol withdrawal in adolescent rats.

Materials And Methods: Sixty male Sprague-Dawley rats were exposed to a 20% ethanol solution for 21 days, followed by a 21-day drug-free period to assess long-term behavioral and physiological changes.

View Article and Find Full Text PDF

Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!