The approach of graph-based diffusion tensor imaging (DTI) networks has been used to explore the complicated structural connectivity of brain aging. In this study, the changes of DTI networks of brain aging were quantitatively and qualitatively investigated by comparing the characteristics of brain network. A cohort of 60 volunteers was enrolled and equally divided into young adults (YA) and older adults (OA) groups. The network characteristics of critical nodes, path length (Lp), clustering coefficient (Cp), global efficiency (Eglobal), local efficiency (Elocal), strength (Sp), and small world attribute (σ) were employed to evaluate the DTI networks at the levels of whole brain, bilateral hemispheres and critical brain regions. The correlations between each network characteristic and age were predicted, respectively. Our findings suggested that the DTI networks produced significant changes in network configurations at the critical nodes and node edges for the YA and OA groups. The analysis of whole brains network revealed that Lp, Cp increased (p < 0.05, positive correlation), Eglobal, Elocal, Sp decreased (p < 0.05, negative correlation), and σ unchanged (p ≥ 0.05, non-correlation) between the YA and OA groups. The analyses of bilateral hemispheres and brain regions showed similar results as that of the whole-brain analysis. Therefore the proposed scheme of DTI networks could be used to evaluate the WM changes of brain aging, and the network characteristics of critical nodes exhibited valuable indications for WM degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2021303DOI Listing

Publication Analysis

Top Keywords

dti networks
20
brain aging
16
critical nodes
12
brain
9
brain network
8
diffusion tensor
8
tensor imaging
8
network characteristics
8
characteristics critical
8
bilateral hemispheres
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!