The high-performing biomimetic behaviors of crustaceans are the optimal results of long-time wise adaption to their living environment. One outstanding prototype is crab claw, which has the combining advantages of lightweight and high strength. To promote relevant engineering applications, it is imperative to explore its mechanical behaviors and structural characteristics. In this work, mechanical test and finite element analysis (FEA) are performed to reveal the fundamental mechanical properties and clamping behaviors of snow crab (Chionoecetes opilio) claw, respectively. A lightweight modeling method, parametric lofting modeling, for the 3D modeling of the claw is employed, which is compared with the traditional reverse engineering modeling method based on tomography image. Our results demonstrated that the hardness and modulus of the regions near the top of the claw are larger than those of the regions near of bottom of the claw. Moisture is a critical factor in controlling the tensile behavior of the claw and the wet specimens exhibit higher modulus and strength under tensile loading. Besides, The parametric lofting method is highly flexible and efficient in generating 3D geometrical model. The investigation of clamping behaviors provides not only insights into mechanical behaviors and intrinsic mechanisms but also a practical guide for their potential applications, such as designing high-performing artificial clamping muscles for clinical operations, aerospace applications, and robotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2021.104818 | DOI Listing |
Transfusion
January 2025
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Background: Neonates with congenital anomalies frequently require perioperative allogeneic red blood cell (RBC) transfusion. Whole cord blood for autologous transfusion to neonates may provide an alternative RBC source, but whether sufficient volumes can be collected after delayed cord clamping to reduce allogeneic RBC requirements is unknown.
Study Design And Methods: Inclusion criteria were mothers delivering a viable infant >34 weeks' gestation.
Mater Horiz
January 2025
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
Adhesion-switchable ultralow-hysteresis polymer ionogels are highly demanded in soft electronics to avoid debonding damage and signal distortion, yet the design and fabrication of such ionogels are challenging. Herein, we propose a novel method to design switchable adhesive ionogels by using binary ionic solvents with two opposite-affinity ionic components. The obtained ionogels exhibit moisture-induced phase separation, facilitating switchable adhesion with a high detaching efficiency (>99%).
View Article and Find Full Text PDFSci Rep
January 2025
Computational Fluid Dynamics Laboratory, School of Mechanical Engineering, VIT, Vellore, 632014, India.
Stenosis causes the narrowing of arteries due to plaque buildup, which impedes blood flow and affects flow dynamics. This work numerically analyzes flow fluctuations in stenosed arteries under realistic physiological conditions (resting and exercise) and external body acceleration. The artery is inclined at angle , and blood rheology is modeled using a generalized power-law fluid.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Faculty of Medicine, University of Maribor, Maribor, Slovenia.
Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.
View Article and Find Full Text PDFThe bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!