Fe(III) macrocyclic complexes containing a macrocycle and three pendant groups including phosphonate (NOTP =1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid), carboxylate (NOTA = 1,4,7 - triazacyclononane - N,N',N″ - triacetate) or hydroxypropyl (NOHP =(2S,2'S,2"S)-1,1',1″-(1,4,7-triazonane-1,4,7-triyl)tris(propan-2-ol)) were studied in order to compare the effect of these donor groups on solution chemistry and water proton relaxivity. All three complexes, Fe(NOTP), Fe(NOHP) and Fe(NOTA), display a large degree of kinetic inertness to dissociation in the presence of phosphate and carbonate, under acidic conditions of 100 mM HCl or 1 M HCl or to trans-metalation with Zn(II). The r proton relaxivity of the complexes at 1.4 T, 33 °C is compared over the pH range of 1 to 10. At pH 7.4, 33 °C, 1.4 T, Fe(NOHP) has the largest relaxivity (1.5 mM s), Fe(NOTP) is second at 1.0 mM s, whereas Fe(NOTA) is the lowest at 0.61 mM s. Fe(NOTP), Fe(NOHP) and Fe(NOTA) all show an increase in relaxivity at very acidic pH values (< 3) that is consistent with an acid-catalyzed process. Variable temperature O NMR studies at near neutral pH are consistent with the absence of an inner-sphere water molecule for Fe(NOTP) and Fe(NOHP), supporting second-sphere or outer-sphere water contributions to proton relaxation. Fe(NOTP) shows contrast enhancement in T weighted MRI studies in mice and clears through a renal pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124524 | PMC |
http://dx.doi.org/10.1016/j.jinorgbio.2021.111594 | DOI Listing |
J Inorg Biochem
December 2021
Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America. Electronic address:
Fe(III) macrocyclic complexes containing a macrocycle and three pendant groups including phosphonate (NOTP =1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid), carboxylate (NOTA = 1,4,7 - triazacyclononane - N,N',N″ - triacetate) or hydroxypropyl (NOHP =(2S,2'S,2"S)-1,1',1″-(1,4,7-triazonane-1,4,7-triyl)tris(propan-2-ol)) were studied in order to compare the effect of these donor groups on solution chemistry and water proton relaxivity. All three complexes, Fe(NOTP), Fe(NOHP) and Fe(NOTA), display a large degree of kinetic inertness to dissociation in the presence of phosphate and carbonate, under acidic conditions of 100 mM HCl or 1 M HCl or to trans-metalation with Zn(II). The r proton relaxivity of the complexes at 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!