Hydrogen bond networks play a crucial role in biomolecules and molecular materials such as ices. How these networks react to pressure directs their properties at extreme conditions. We have studied one of the simplest hydrogen bond formers, hydrogen chloride, from crystallization to metallization, covering a pressure range of more than 2.5 million atmospheres. Following hydrogen bond symmetrization, we identify a previously unknown phase by the appearance of new Raman modes and changes to x-ray diffraction patterns that contradict previous predictions. On further compression, a broad Raman band supersedes the well-defined excitations of phase V, despite retaining a crystalline chlorine substructure. We propose that this mode has its origin in proton (H) mobility and disorder. Above 100 GPa, the optical bandgap closes linearly with extrapolated metallization at 240(10) GPa. Our findings suggest that proton dynamics can drive changes in these networks even at very high densities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442878PMC
http://dx.doi.org/10.1126/sciadv.abi9507DOI Listing

Publication Analysis

Top Keywords

hydrogen bond
12
hydrogen chloride
8
hydrogen
5
superionicity disorder
4
disorder bandgap
4
bandgap closure
4
closure dense
4
dense hydrogen
4
chloride hydrogen
4
bond networks
4

Similar Publications

The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.

View Article and Find Full Text PDF

Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.

View Article and Find Full Text PDF

A series of significantly bulky mono- and di-substituted cyclic alkyl-amino carbene (cAAC)- functionalized cyclopentadiene ring (Cp) compounds were synthesized. The functionalization of the Cp ring with cAAC ligands makes them significantly bulkier, while retaining their ligation properties. These compounds display interesting fluorescence properties.

View Article and Find Full Text PDF

Background: Cadaverine and hydrocinnamic acid are frequent metabolites in inflamed periodontal areas. Their role as a metabolite for plant growth inhibition has been established, but their relevance in humans has yet to be determined. Moreover, Vascular endothelial growth factor (VGEF) is a consistent growth factor in neo-angiogenesis in periodontal regeneration.

View Article and Find Full Text PDF

A novel isopthalamide based receptor HL2 featuring two p-benzoic acid units has been synthesised and its anion binding properties analysed by H-NMR spectroscopy in DMSO-d/0.5 % HO. As expected, in the presence of tetrabutylammonium (TBA) fluoride the deprotonation of the carboxylic acid moieties was observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!