Cervical cancer (CC) is one of the most common malignant tumors. This study analyzed the impact of protein tyrosine phosphatase, receptor type B (PTPRB) on malignant behavior of CC and explored its possible molecular mechanism. RT-PCR, western blot and Immunohistochemistry were applied to examine the expression of PTPRB in CC specimens and cells. Aberrant PTPRB expression in CC and survival outcomes were constructed using The Cancer Genome Atlas (TCGA) database and tissue microarray cervical squamous cell carcinoma cohort. Cultured human CC cells were assayed for viability, apoptosis, migration, and invasion in vitro and in vivo. Kyoto Encyclopedia of Genes and Genomes (KEGG) assays and gene set enrichment analysis (GSEA) assays were used to delve into PTPRB-related pathways using TCGA datasets. The levels of proteins associated with the epithelial-mesenchymal transition (EMT) pathway and modulated by PTPRB were examined through Western blot. We found that the levels of PTPRB in CC tissues and cells were distinctly up-regulated. PTPRB was also an unfavorable prognostic factor for CC patients. Functionally, PTPRB knockdown exhibits tumor-suppressive function via reducing cell proliferation and metastasis and inducing cell apoptosis. KEGG assays and GSEA assays suggested PTPRB overexpression was associated with several tumor-related pathways. The results of Western blot assays suggested that N-cadherin was decreased in the PTPRB-knockdown CC cells, while E-cadherin was increased. Overall, PTPRB is highly expressed in CC and can effectively enhance the proliferation, metastasis and EMT process of tumor cells. PTPRB is expected to be a therapeutic target for CC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806814 | PMC |
http://dx.doi.org/10.1080/21655979.2021.1968250 | DOI Listing |
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
Background: Glucagon-like peptide 1 (GLP-1) is a peptide hormone that plays several physiological roles in treating diabetes and in protecting the brain. Recent clinical trials testing 4 different GLP-1 class drugs in phase 2 trials showed a clear correlation between neuroprotection and the ability to cross the BBB. Exenatide and Lixisenatide both showed excellent protective effects in patients Parkinson's disease (PD) and both drugs can readily cross the BBB.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Florida / Center for Translational Research in Neurodegenerative Disease, Gainesville, FL, USA.
Background: Vaxxinity is developing an active immunotherapy targeting Tau for Alzheimer's disease (AD) and other tauopathies. VXX-301 is a multi-epitope vaccine designed to target the N-terminal and repeat domains of Tau. This design enables targeting multiple forms of Tau thought to contribute to Tau associated pathologies.
View Article and Find Full Text PDFBackground: Accumulating evidence highlights impairment of autophagy as a key pathological feature of neurodegenerative diseases including Alzheimer's disease (AD). Autophagy is a highly dynamic, lysosome-based degradation process that promotes the clearance of degenerative factors to maintain cellular functions, preserve metabolic integrity, and ensure survival. Impaired autophagic function leads to the abnormal accumulation of autophagic vesicles (i.
View Article and Find Full Text PDFBackground: Seizures in Alzheimer's Disease (AD) are increasingly recognized to occur and can increase cognitive decline and reduce survival compared to unaffected age-matched peers (Lyou et al. 2018). Administration of antiseizure medicines (ASMs) to AD patients with epileptiform activity may improve cognition (Vossel et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!