Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Resistance to nonribosomally synthesized peptide antibiotics affecting the cell envelope is well studied and mostly associated with the action of peptide-sensing and detoxification (PSD) modules, which consist of a two-component system (TCS) and an ATP-binding cassette (ABC) transporter. In contrast, the mechanisms of resistance to ribosomally synthesized bacterial toxic peptides (bacteriocins), which also affect the cell envelope, are studied to a lesser extent, and the possible cross-resistance between them and antibiotics is still poorly understood. In the present study, we investigated the development of resistance of Lactococcus lactis to aureocin A53- and enterocin L50-like bacteriocins and cross-resistance with antibiotics. First, 19 spontaneous mutants resistant to their representatives were selected and also displayed changes in sensitivity to peptide antibiotics acting on the cell envelope (bacitracin, daptomycin, and gramicidin). Sequencing of their genomes revealed mutations in genes encoding the ABC transporter YsaCB and the TCS KinG-LlrG, the emergence of which induced the upregulation of the and operons. The mutations were either nonsense or frameshift mutations and led to the generation of truncated YsaB but with the conserved N-terminal FtsX domain intact. Deletions of or had a minor effect on the resistance of the obtained mutants to the tested bacteriocins, daptomycin, and gramicidin, indicating that the development of resistance is dependent on the modification of the protein rather than its absence. In further corroboration of the above-mentioned conclusion, we show that the FtsX domain, which functions effectively when YsaB is lacking its central and C-terminal parts, is critical for resistance to these antimicrobials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597747 | PMC |
http://dx.doi.org/10.1128/AAC.00921-21 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!