Two-dimensional monolayer structures of transition metal dichalogenides (TMDs) have been shown to allow many higher-order excitonic bound states, including trions (charged excitons), biexcitons (excitonic molecules), and charged biexcitons. We report here experimental evidence and the theoretical basis for a new bound excitonic complex, consisting two free carriers bound to an exciton in a bilayer structure. Our experimental measurements on structures made using two different materials show a new spectral line at the predicted energy with two different TMD materials (MoSe and WSe) with both n- and p-doping if and only if all the required theoretical conditions for this complex are fulfilled, in particular, only in the presence of a parallel metal layer that significantly screens the repulsive interaction between the like-charge carriers. Because these four-carrier bound states are charged bosons, they could eventually be the basis for a new path to superconductivity without Cooper pairing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c02422DOI Listing

Publication Analysis

Top Keywords

charged bosons
8
bound states
8
charged
4
bosons fermions
4
fermions bilayer
4
bilayer structures
4
structures strong
4
strong metallic
4
metallic screening
4
screening two-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!