Identification of key residues for efficient glucose transport by the hexose transporter CgHxt4 in high sugar fermentation yeast Candida glycerinogenes.

Appl Microbiol Biotechnol

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.

Published: October 2021

AI Article Synopsis

  • Efficient hexose transporters are critical for improving the fermentation performance of yeast used in industrial applications, with CgHxt4 identified as a high-performing transporter in C. glycerinogenes able to handle ultra-high glucose concentrations.
  • Researchers created 87 mutants to study sugar uptake and found that five specific residues (N321, N322, F325, G426, and P427) are crucial for CgHxt4's glucose transport efficiency.
  • In-depth analysis showed that N321 likely aids in glucose coordination, while P427 contributes to the transporter’s flexibility, ultimately suggesting avenues for enhancing yeast performance in sugar fermentation.

Article Abstract

Efficient hexose transporters are essential for the development of industrial yeast strains with high fermentation performance. We previously identified a hexose transporter, CgHxt4, with excellent sugar uptake performance at ultra-high glucose concentrations (200 g/L) in the high sugar fermenting yeast C. glycerinogenes. To understand the working mechanism of this transporter, we constructed 87 mutants and examined their glucose uptake performance. The results revealed that five residues (N321, N322, F325, G426, and P427) are essential for the efficient glucose transport of CgHxt4. Subsequently, we focused our analysis on the roles of N321 and P427. Specifically, N321 and P427 are likely to play a role in glucose coordination and conformational flexibility, respectively. Our results help to expand the application potential of this transporter and provide insights into the working mechanism of yeast hexose transporter. KEY POINTS: • Five residues, transmembrane segments 7 and 10, were found to be essential for CgHxt4. • N321 and P427 are likely to play a role in glucose coordination and conformational flexibility, respectively. • Chimeric CgHxt5.4TM7 significantly enhanced the performance of CgHxt5.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-021-11567-6DOI Listing

Publication Analysis

Top Keywords

hexose transporter
12
n321 p427
12
efficient glucose
8
glucose transport
8
transporter cghxt4
8
high sugar
8
uptake performance
8
working mechanism
8
p427 play
8
play role
8

Similar Publications

Quantifying glucose uptake at the single cell level with confocal microscopy reveals significant variability within and across individuals.

Sci Rep

January 2025

Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA.

Measurement of glycated hemoglobin (HbA1c) in human red blood cells plays a critical role in the diagnosis and treatment of diabetes mellitus. However, recent studies have suggested large variation in the relationship between average glucose levels and HbA1c, creating the need to understand glucose variability at the cellular level. Here, we devised a fluorescence-based method to quantitatively observe GLUT1-mediated intracellular glucose analog tracer uptake in individual RBCs utilizing microfluidics and confocal microscopy.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.

View Article and Find Full Text PDF

A murine model of acute and prolonged abdominal sepsis, supported by intensive care, reveals time-dependent metabolic alterations in the heart.

Intensive Care Med Exp

January 2025

Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium.

Background: Sepsis-induced cardiomyopathy (SICM) often occurs in the acute phase of sepsis and is associated with increased mortality due to cardiac dysfunction. The pathogenesis remains poorly understood, and no specific treatments are available. Although SICM is considered reversible, emerging evidence suggests potential long-term sequelae.

View Article and Find Full Text PDF

Indirect bypass using autologous tissue is effective in Moyamoya disease, especially among pediatric patients. This study aimed to evaluate the effectiveness of indirect bypass using DuraGen (absorbable artificial dura mater composed of collagen matrix), as a substitute for autologous tissue in a rat model of chronic cerebral hypoperfusion. Male Wistar rats were subjected to bilateral internal carotid artery occlusion and divided into three groups: a control group without bypass surgery, a group wherein indirect bypass was performed using the temporalis muscle (encephalo-myo-synangiosis [EMS] group), and a group wherein DuraGen was used (Dura group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!