This work reports on biophysical insights into the excited state intramolecular proton transfer (ESIPT) processes taking place in three 1,3,4-thiadiazole derivatives that served as model compounds, on which electronic absorption, fluorescence, Fourier-transform infrared spectroscopy (FTIR), surface plasmon resonance (SPR) and electrochemical impedance spectroscopy (EIS) studies were performed. The fluorescence spectra recorded in various solvents revealed an interesting dual fluorescence effect. In molecules in their monomeric form, the effect is associated with the ESIPT phenomenon, and may be further enhanced by aggregation-related effects, such as aggregation-induced emissions. Other spectroscopic studies on the selected molecules in a liposomal medium as a model revealed that, in a biomimetic environment, they can exist in both monomeric and aggregated forms. In both cases, however, the effects observed are closely related to the lipid's main phase transition temperature and the structure of the molecule. Introduction of specific substituents to the phenyl moiety either allows or prevents proton transfer from occurring in the excited state. The hydrophobicity changes in a lipid environment may result in an emergence of specific molecular forms and therefore either facilitate or hinder ESIPT processes. SPR and EIS confirmed the significant hydrophobicity changes in the model lipid systems, while FTIR measurements revealed a notable influence of 1,3,4-thiadiazoles on the fluidity of liposomal membranes. The results obtained clearly show that the thiadiazole derivatives are very good model molecules for studying hydrophobic-hydrophilic environments, and particularly with polymers or liposomes used as drug delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566415PMC
http://dx.doi.org/10.1007/s00249-021-01569-7DOI Listing

Publication Analysis

Top Keywords

dual fluorescence
8
134-thiadiazole derivatives
8
excited state
8
proton transfer
8
esipt processes
8
hydrophobicity changes
8
model
5
insight dual
4
fluorescence
4
fluorescence effects
4

Similar Publications

The inclusion of artificial food additives such as vanillin in infant formula should be strictly monitored to mitigate potential negative impacts on the dietary habits and health of infants. This raises a necessity of an accurate inspection and prompt feedback of vanillin in infant foods. In this study, colorimetric and fluorescent dual-mode assays based on CuNS/FeO@MIPs were established to detect vanillin selectively and sensitively.

View Article and Find Full Text PDF

Genomic identification of the gene family in apple and functional analysis of involved in flowering transition.

Mol Breed

January 2025

College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China.

Unlabelled: Apple is a crucial economic product extensively cultivated worldwide. Its production and quality are closely related to the floral transition, which is regulated by intricate molecular and environmental factors. () is a transcription factor that is involved in regulating plant growth and development, with certain play significant roles in regulating flowering.

View Article and Find Full Text PDF

Developing hybrid fluorescence (FL)/room-temperature phosphorescent (RTP) materials in dry-state, aqueous, and organic solvents holds paramount importance in broadening their applications. However, it is extremely challenging due to dissolved oxygen and solvent-assisted relaxation causing RTP quenching in an aqueous environment and great dependence on SiO-based materials. Herein, an efficient endogenetic carbon dot (CD) strategy within melamine-formaldehyde (MF) microspheres to activate RTP of CDs has been proposed through the pyrolysis of isophthalic acid (IPA) molecules and branched-chain intra-microspheres.

View Article and Find Full Text PDF

CRISPR/Cas12a regulated preassembled bulb-shaped G-quadruplex signal unit for FL/CM dual-mode ultrasensitive detection of miRNA-155.

Talanta

December 2024

Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China. Electronic address:

High sensitivity and specificity in microRNA detection are of great significance for early cancer screening. This study employed a pre-assembled bulb-shaped G-quadruplex signal unit (G4MB) as a novel and efficient label-free probe. The products amplified by the miRNA-155-targeted exponential amplification reaction (EXPAR) activated the trans-cleavage activity of CRISPR/Cas12a, disrupting the G4MB structure to achieve dual-channel fluorescence/colorimetric (FL/CM) inverse signal output.

View Article and Find Full Text PDF

Bacterial surface informatics reliant on multi-mechanism simultaneous detection for Salmonella typhimurium and Staphylococcus aureus.

Food Chem

December 2024

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China; College of Food Engineering, Ludong University, Yantai, 264025, Shandong, PR China. Electronic address:

Fully excavating and utilizing the rich information presented on bacterial surfaces can open innovative solutions for the multi-mechanism detection of food-borne pathogens. In this work, a colorimetric-fluorescence dual-signal lateral flow immunoassay was used to establish a simultaneous detection strategy integrating five physical, chemical, and biometric combining mechanisms for Salmonella typhimurium (S. typhimurium) and Staphylococcus aureus (S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!