Highly specific detection of KRAS single nucleotide polymorphism by asymmetric PCR/SERS assay.

Analyst

ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.

Published: September 2021

The molecular diagnosis of KRAS mutations has become crucial for clinical decision-making in colorectal cancer (CRC) treatments. Currently, the common methods for detecting mutations are based on quantitative PCR, DNA sequencing and droplet digital PCR (ddPCR), which require expensive specialized equipment and testing reagents. Herein, we propose a simple and specific strategy by integrating asymmetric PCR with surface-enhanced Raman spectroscopy (Asy-PCR/SERS) for the detection of KRAS G12V mutation, one of the most common driver mutations in CRC. To discriminate mutant targets from non-targets, Asy-PCR was applied to obtain single-stranded DNA (ssDNA) with unequal amounts of forward and reverse primers, subsequently, detection of the target mutant ssDNA amplicons was attempted by hybridization with Raman reporter-coded and allele-specific oligonucleotide-functionalized gold nanoparticles (SERS nanotags). The oligo encoding of the KRAS G12V mutant sequence could be identified by using a portable Raman spectrometer where the characteristic spectra of SERS nanotags indicate the presence of mutant targets. The Asy-PCR/SERS method showed high specificity and sensitivity for identifying as few as 0.1% mutant alleles of KRAS G12V mutation from non-target sequences. Using colorectal polyp biopsies, we demonstrated that Asy-PCR/SERS assay could distinguish KRAS G12V (c.35G > T) and KRAS G12D (c.35G > A) which occur at the same nucleotide location. As KRAS G12V is a driver oncogene in other cancers including lung, pancreatic, ovarian and endometrial cancers, the proposed assay shows great potential for application in additional tumor streams.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1an01108aDOI Listing

Publication Analysis

Top Keywords

kras g12v
20
kras
8
detection kras
8
g12v mutation
8
mutant targets
8
sers nanotags
8
g12v
5
mutant
5
highly specific
4
specific detection
4

Similar Publications

Decoding KRAS mutation in non-small cell lung cancer patients receiving immunotherapy: A retrospective institutional comparison and literature review.

Lung Cancer

December 2024

Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, Italy.

Introduction: KRAS mutation the most common molecular alteration in advanced non-small cell lung cancer (NSCLC) and is associated with an unfavourable prognosis, largely due to the lack of targeted therapeutic options for the majority of the KRAS mutated isoforms. The landscape of NSCLC treatment has expanded with the introduction of immune checkpoint inhibitors (ICIs). Nonetheless, data regarding the efficacy of ICI in NSCLC patients harbouring KRAS mutations are conflicting.

View Article and Find Full Text PDF

Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and G12/G13 Detection in Cell-Free DNA.

Cancer Genomics Proteomics

December 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;

Background/aim: Cholangiocarcinoma (CCA) is an aggressive hepatobiliary malignancy characterized by genomic heterogeneity. KRAS mutations play a significant role in influencing patient prognosis and guiding therapeutic decision-making. This study aimed to determine the prevalence and prognostic significance of KRAS mutations in CCA, asses the detection of KRAS G12/G13 mutations in plasma cell-free DNA (cfDNA), and evaluate the prognostic value of KRAS G12/G13 mutant allele frequency (MAF) in cfDNA in relation to clinicopathological data and patient survival.

View Article and Find Full Text PDF

KRAS is the most frequently mutated oncogene in lung adenocarcinoma, with G12C and G12V being the most predominant forms. Recent breakthroughs in KRASG12C inhibitors have transformed the clinical management of patients with G12C mutation and advanced our understanding of its function. However, little is known about the targeted disruption of KRASG12V, partly due to a lack of specific inhibitors.

View Article and Find Full Text PDF

Suite of Biochemical and Cell-Based Assays for the Characterization of Kirsten Rat Sarcoma (KRAS) Inhibitors and Degraders.

ACS Pharmacol Transl Sci

December 2024

Research and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States.

KRAS is an important oncogenic driver which is mutated in numerous cancers. Recent advances in the selective targeting of KRAS mutants via small molecule inhibitors and targeted protein degraders have generated an increase in research activity in this area in recent years. As such, there is a need for new assay platforms to profile next generation inhibitors which improve on the potency and selectivity of existing drug candidates, while evading the emergence of resistance.

View Article and Find Full Text PDF

Background: Stage I nonsmall cell lung cancer (NSCLC) is primarily treated with surgical resection and has a favorable prognosis with an expected recurrence rate of 30%. New methods to risk stratify patients with stage I NSCLC are needed to help select those that might benefit from more active surveillance or adjuvant therapy.

Methods: We analyzed clinical data from 1330 patients (1469 tumors) with NSCLC and correlated it with next-generation sequencing (NGS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!