Untargeted metabolomic study of HepG2 cells under the effect of Fucus vesiculosus aqueous extract.

Rapid Commun Mass Spectrom

Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Campo Grande, Lisbon, Portugal.

Published: December 2021

AI Article Synopsis

Article Abstract

Rationale: Fucus vesiculosus has been described with potential to develop functional foods containing bioactive compounds against various diseases. However, more studies are needed to better understand its functioning and its previously reported bioactivities, mainly at the molecular level.

Methods: An untargeted metabolomic study was performed to analyse HepG2 cells exposed to F. vesiculosus aqueous extract, rich in phlorotannins and peptides, during 24 h. This study was carried out using liquid chromatography combined with high-resolution tandem mass spectrometry.

Results: This metabolomic study showed significant changes in HepG2 metabolites in the presence of the extract, standing out being the increased intensity of various fatty acid amides (oleamide, (Z)-eicos-11-enamide, linoleamide, palmitamide, dodecanamide and stearamide). This group of metabolites is reported in the literature with anticancer and hypocholesterolemic activity, bioactivities also described for F. vesiculosus. The extract induced, likewise, the expression of glutathione indicating its antioxidant effect.

Conclusions: This study demonstrated the potential of the compounds present in the F. vesiculosus aqueous extract for the development of natural drugs, nutraceuticals or dietary supplements, justified at the molecular level by changes in cell metabolites related to anticancer and hypocholesterolemic activity. The results here described, using an untargeted metabolomic approach, may contribute to a better understanding of algal behaviour, when used as food, in health-promoting effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.9197DOI Listing

Publication Analysis

Top Keywords

untargeted metabolomic
12
metabolomic study
12
vesiculosus aqueous
12
aqueous extract
12
hepg2 cells
8
fucus vesiculosus
8
anticancer hypocholesterolemic
8
hypocholesterolemic activity
8
study
5
vesiculosus
5

Similar Publications

Marine actinobacteria metabolites: unlocking new treatments for acne vulgaris.

Front Microbiol

January 2025

Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía, Cundinamarca, Colombia.

Marine-derived actinobacteria isolated from sponge and soft coral were screened for antibacterial activity against acne-related bacteria, specifically ATCC 14990, methicillin-resistant ATCC BAA44, and ATCC 6919. Cytotoxicity assays were performed on human dermal fibroblast (HDFa) and keratinocyte (HaCaT) cell lines to assess the safety profile of the extracts. Chemical characterization was conducted using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS).

View Article and Find Full Text PDF

Background: Osteopenia (ON) and osteoporosis (OP) are highly prevalent among postmenopausal women and poses a challenge for early diagnosis. Therefore, identifying reliable biomarkers for early prediction using metabolomics is critically important.

Methods: Initially, non-targeted metabolomics was employed to identify differential metabolites in plasma samples from cohort 1, which included healthy controls (HC, n = 23), osteonecrosis (ON, n = 36), and osteoporosis (OP, n = 37).

View Article and Find Full Text PDF

Essential oil and furanosesquiterpenes from myrrh oleo-gum resin: a breakthrough in mosquito vector management.

Nat Prod Bioprospect

January 2025

Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032, Camerino, Italy.

Mosquitoes (Diptera: Culicidae) are vectors of various pathogens of public health concern and replacing conventional insecticides remains a challenge. In this regard, natural products represent valuable sources of potential insecticidal compounds, thus increasingly attracting research interest. Commiphora myrrha (T.

View Article and Find Full Text PDF

Application of predictive modeling tools for the identification of Ocimum spp. herbal products.

Anal Bioanal Chem

January 2025

Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA.

Species identification of botanical products is a crucial aspect of research and regulatory compliance; however, botanical classification can be difficult, especially for morphologically similar species with overlapping genetic and metabolomic markers, like those in the genus Ocimum. Untargeted LC-MS metabolomics coupled with multivariate predictive modeling provides a potential avenue for improving herbal identity investigations, but the current dearth of reference materials for many botanicals limits the applicability of these approaches. This study investigated the potential of using greenhouse-grown authentic Ocimum to build predictive models for classifying commercially available Ocimum products.

View Article and Find Full Text PDF

Exploration of the effects of geographical regions on the volatile and non-volatile metabolites of black tea utilizing multiple intelligent sensory technologies and untargeted metabolomics analysis.

Food Chem X

October 2024

Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

Geographical regions profoundly influence the flavor characteristics of Congou black tea (CBT). In this study, 35 CBT samples from 7 geographical regions were comprehensively characterized by integrated multiple intelligent sensory technologies and untargeted metabolomics analysis. A satisfactory discrimination was achieved through the fusion of multiple intelligent sensory technologies (RY = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!