Network Pharmacology Analysis of Molecular Mechanism of Curcuma longa L. Extracts Regulating Glioma Immune Inflammatory Factors: Implications for Precise Cancer Treatment.

Curr Top Med Chem

Department of Clinical Laboratory, The Second Affiliated Hospital of Henan University of TCM, No.6 Dongfeng Road, Henan Province, 450002, Zhengzhou, People's Republic of China.

Published: March 2022

Introduction: Curcuma longa L. has been associated with different antioxidant, antiinflammatory, bactericidal and anticancer effects, but the mechanisms of the effects are not yet clearly understood. This study aimed to investigate the key targets and the effect of potential molecular mechanisms of Curcuma longa L. extracts on glioma using different network pharmacology analysis approaches.

Methods: The components of Curcuma longa were extracted by gas chromatography-mass spectrometry (GC-MS), and the active components related to the occurrence and development of glioma were determined by traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database, and the same targets of the active components and glioma were screened by network pharmacology approach. Then, the protein's function and regulatory pathway of the common targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The protein's action and regulatory pathway of the common targets were analyzed with the Cytoscape package using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database to construct the target interaction network through which the key targets were identified.

Results: GC-MS combined with TCMSP database was used to identify the active components related to the occurrence and development of glioma in Curcuma longa. Finally, we identified the active components 1-(1,5-Dimethyl-4-hexenyl)-4-methyl benzene and Zingiberene. At the same time, 190 target genes of Curcuma longa extracts on glioma were obtained using the Venn diagram. The results of GO analysis showed that the biological processes involved included a response to stimulation, metabolic process, inflammatory process, cell differentiation, and regulation of biological processes. KEGG analysis showed that the PI3K-Akt signaling pathway, MAPK signaling pathway, Th17 cell differentiation, and proteoglycan pathway might be involved in cancer. Further analyses showed that the IL-17 signaling pathway and Interleukin-4 and interleukin-13 signaling were involved in the inflammatory pathway. The analysis of key nodes showed that GSK3B, MAPK14, HSP90AA1, MAPK3 and MAPK8 were IL-17 signaling pathways, while HIF1A and JAK3 were Interleukin-4 and interleukin-13 signaling pathways.

Conclusion: Curcuma longa extracts can regulate the occurrence and development of glioma by regulating the immune-inflammatory responses.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026621666210910123749DOI Listing

Publication Analysis

Top Keywords

curcuma longa
28
longa extracts
16
active components
16
network pharmacology
12
occurrence development
12
development glioma
12
signaling pathway
12
pharmacology analysis
8
key targets
8
extracts glioma
8

Similar Publications

Background: Curcumin (Cur) is a polyphenol phyto-compound found in turmeric () that inhibits tumorigenesis by introducing apoptosis and restricting cell survival and proliferation. This in vitro research article focuses on the pharmacodynamic interactions of Cur combined with the commercial drug doxorubicin (Doxo) to enhance the cytotoxicity of Doxo at lower doses against triple-negative breast cancer cells (MDA-MB-231) with the chemo-protective effect against normal HEK293 cells. In this study, we observed the dose-dependent cytotoxicity, increased reactive oxygen species (ROS) generation, and increased chromatin condensation in combination doses compared to single doses.

View Article and Find Full Text PDF

Brain aging is a multifactorial process that includes a reduction in the biological and metabolic activity of individuals. Oxidative stress and inflammatory processes are characteristic of brain aging. Given the current problems, the need arises to implement new therapeutic approaches.

View Article and Find Full Text PDF

In an era where chemical synthesis of nanomaterial is accounting for the generation of toxic wastes, leading to nanotoxicity, the present work focuses on the extraction of carbon nanodots from available natural sources such as turmeric smoke. The extracted carbon nanodots were characterized and their physical and chemical attributes were confirmed. The antibacterial property of the isolated carbon nanodots was tested against coliforms and oral bacteria.

View Article and Find Full Text PDF

This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential.

View Article and Find Full Text PDF

Turmeric (Curcuma longa L.) has gained significant attention for its medicinal properties, yet its therapeutic applications are often limited by low aqueous solubility and susceptibility to environmental factors. This study investigates the formulation of a curcumin-rich turmeric extract-β-cyclodextrin inclusion complex (TUE-β-CD) to enhance its bioactivity and stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!