Background: While previous studies have demonstrated a complex visual scene search elicits a robust neurovascular coupling (NVC) response, it is unknown how the duration of visual stimuli presentation influences NVC metrics. This study examined how stimuli duration, in addition to biological sex and self-reported engagement impact NVC responses.
Methods: Participants (n = 20, female = 10) completed four visual paradigms. Three involved simple visual shapes presented at 0.5-, 2-, and 4-s intervals in randomized orders. The fourth paradigm was a complex visual scene search ("Where's Waldo?"). Participants completed eight cycles of 20-s eyes-closed followed by 40-s eyes-open. Transcranial Doppler ultrasound indexed posterior and middle cerebral artery velocities (PCA and MCA). Participants self-reported their engagement following each task (1 [minimal] to 10 [maximal]).
Results: The "Where's Waldo?" task evoked greater PCA percent increase (all p < 0.001) and area under the curve during the first 30-s of the task (all p < 0.001) compared to simple shapes. Females displayed greater absolute baseline and peak PCA and MCA velocities across all tasks (all p < 0.002). Subjective engagement displayed moderate correlation levels with PCA percent increase (Spearman ρ = 0.58) and area under the curve (Spearman ρ = 0.60) metrics in males, whereas these were weak for females (Spearman ρ = 0.43 and ρ = 0.38, respectively).
Conclusions: The complex visual paradigm "Where's Waldo?" greatly augmented the signal-to-noise ratio within the PCA aspects of the NVC response compared to simple shapes. While both sexes had similar NVC responses, task engagement was more related to NVC metrics in males compared to females. Therefore, future NVC investigations should consider task engagement when designing studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436054 | PMC |
http://dx.doi.org/10.14814/phy2.15020 | DOI Listing |
Alzheimers Dement
December 2024
Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide and vascular dysfunction represents one of the first abnormalities in AD spectrum. Brain imaging techniques that use changes in hemodynamic signals to measure alterations in neurovascular coupling (NVC) have proven useful for early detection of cognitive deterioration. Pharmacological interventions targeting vascular risk factors, including simvastatin (SV), show promise in preventing dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky College of Medicine, Sanders-Brown Center on Aging, Lexington, KY, USA.
Background: Astrocytes are a glial cell type responsible for many protective functions in the brain. While they are primarily recognized for regulating synaptic activity, they're also essential for maintaining the neurovascular unit, and cerebral hyperperfusion during metabolic demand. Calcium signaling has been identified as a regulatory process for these functions.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky College of Medicine, Sanders-Brown Center on Aging, Lexington, KY, USA.
Background: Vascular pathology profoundly comorbid with AD pathology could worsen disease progression and reduce treatment efficacy. Knowledge of small vessels and cerebrovascular function in AD mouse models is limited. Investigating vascular related aspects for preclinical AD studies is essential for biomarker development and treatment trials.
View Article and Find Full Text PDFJ Clin Periodontol
January 2025
School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
Aim: Neurodegenerative diseases are characterized by early increased beta-amyloid (Aβ) and decreased cerebrovascular reactivity. We investigated Aβ in gingiva, serum or hippocampus and neurovascular reactivity in basilar artery (BA) of periodontitis rats, to test the impact of Aβ on BA vasoreactivity ex vivo.
Materials And Methods: Periodontitis was induced in 32 rats using silk-ligation.
Microcirculation
January 2025
Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
Objective: Cerebral blood flow (CBF) decline is increasingly recognized as an area of importance for targeting neurodegenerative disorders, yet full understanding of the mechanisms that underlie CBF changes are lacking. Animal models are crucial for expanding our knowledge as methods for studying global CBF and neurovascular coupling in humans are limited and require expensive specialized scanners.
Methods: Use of appropriate animal models can increase our understanding of cerebrovascular function, so we have combined chronic cranial windows with in vivo two-photon and laser speckle microscopy and ex vivo capillary-parenchymal arteriole (CaPA) preparations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!