Since the 4th Industrial Revolution, Internet of Things based environments have been widely used in various fields ranging from mobile to medical devices. Simultaneously, information leakage and hacking risks have also increased significantly, and secure authentication and security systems are constantly required. Physical unclonable functions (PUF) are in the spotlight as an alternative. Chaotic phosphorescent patterns are developed based on an organic crystal and atomic seed heterostructure for security labels with PUFs. Phosphorescent organic crystal patterns are formed on MoS . They seem similar on a macroscopic scale, whereas each organic crystal exhibits highly disorder features on the microscopic scale. In image analysis, an encoding capacity as a single PUF domain achieves more than 10 on a MoS small fragment with lengths of 25 µm. Therefore, security labels with phosphorescent PUFs can offer superior randomness and no-cloning codes, possibly becoming a promising security strategy for authentication processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202102542 | DOI Listing |
Chemistry
December 2024
Ulsan National Institute of Science and Technology, Chemistry, UNIST-gil 50, Bldg.108, Rm901-5, 44919, Ulsan, KOREA, REPUBLIC OF.
Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Chinese Academy of Sciences, Institute of Chemistry, 2 Bei Yi Jie, Zhong Guan Cun, 100190, Beijing, CHINA.
Molecular frameworks have recently shown a great potential in atmospheric water harvesting, in which the water release at low temperatures is challenging. Anion-organic frameworks based on anion-coordination chemistry are presented herein to meet this challenge. These frameworks are prepared as tubular single crystals in pure water from the in-situ protonation and crystallization of pyridine-terminated triphenylamine derivatives with hydrochloric or hydrobromic acid.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Indian Institute of Science Education and Research Pune, Chemistry, Dr. Homi Bhabha Road, 411008, Pune, INDIA.
Two-dimensional (2D) chiral hybrid perovskites A2PbI4 (A: chiral organic ion) enable chirality controlled optoelectronic and spin-based properties. A+ organic sublattice induces chirality into the semiconducting [PbI4]2- inorganic sublattice through non-covalent interactions at organic-inorganic interface. Often, the A+ cations in the lattice have different orientations, leading to asymmetry in the non-covalent interactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nagoya University: Nagoya Daigaku, Department of Chemistry, Graduate School of Science, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN.
A new series of metal-organic nanotubes was constructed through one-dimensional assembly using molecular triangles or molecular squares composed of paddlewheel dirhodium complexes and bidentate axial ligands. The metal-organic nanotubes were significantly different from conventional solid metal-organic framework (MOF) motifs. They exhibit good solubility owing to the branched side chains at their periphery and demonstrate high orientation capabilities in thin films owing to their anisotropic structure.
View Article and Find Full Text PDFDalton Trans
December 2024
Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China.
Organic-inorganic hybrid metal halides (OIMHs) with ferroelastic phase transition properties have recently attracted great attention due to their widespread application prospects in the fields of energy storage, sensors, switches, . However, most of the hybrid ferroelastics exhibit phase transition points () far beyond room temperature, which may limit their applications in mechanical switches and energy storage for daily working requirements. Herein, we synthesized a new zinc halide OIMH ferroelastic (,)-[BPHD]ZnBr (BPHD = 1,6-bis(piperidine-1-yl) hexa-2,4-diene diamide), which experiences a 2/1̄ type paraelastic-ferroelastic phase transition at a near-room-temperature of 285 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!