Groundwater fluoride concentrations in the watershed sedimentary basin of Quetta Valley, Pakistan.

Environ Monit Assess

Hydro-Geochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.

Published: September 2021

Litho-geochemical characteristics of low and high fluoride (F) groundwater along with hydrological processes were investigated to delineate its genesis and enrichment mechanism in a watershed sedimentary basin. In this study, groundwater F concentration ranged from 0 to 20 mg/L with a mean and standard deviation of 2.8 and ± 3.7 mg/L, respectively. Out of N = 87, 63% of samples exceeded the World Health Organization (WHO) limit of 1.5 mg/L. The order of cationic and anionic dominance in groundwater samples with mean was found in decreasing order as Na  > Mg  > Ca  > K and HCO  > SO  > Cl  > PO  > NO measured in milligrams per liter. Groundwater chemistry changed from Ca-HCO to Na-HCO type and low to high fluoride as we moved from mountain foot towards the synclinal basin. Low fluoride groundwater reflected weathering, recharge, and reverse ion exchange processes with Ca-HCO- and Ca-Mg-Cl-type water while high fluoride groundwater revealed base ion exchange, mixing, and desorption as dominant hydrological processes with Na-HCO and Na-Cl types of water. Gibb's diagram showed rock weathering and mineral dissolution as the major geochemical processes controlling water chemistry with an insignificant role of evaporation in the semi-arid area. Fluoride was undersaturated with mineral fluorite, indicating fluoride in groundwater is released by secondary minerals. However, due to complex geological features, groundwater fluoride enrichment was affected by a broad-scale process across a wide area such as depth, residence time, and most important geomorphological units hosting the aquifer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-021-09365-8DOI Listing

Publication Analysis

Top Keywords

fluoride groundwater
16
high fluoride
12
groundwater
9
groundwater fluoride
8
watershed sedimentary
8
sedimentary basin
8
low high
8
hydrological processes
8
ion exchange
8
fluoride
7

Similar Publications

Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.

View Article and Find Full Text PDF

A comprehensive analysis of the impact of arsenic, fluoride, and nitrate-nitrite dynamics on groundwater quality and its health implications.

J Hazard Mater

January 2025

Third World Center (TWC) for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:

Groundwater contamination is a growing global concern. The objective of the present study is to assess the groundwater quality of Khairpur district, Sindh, Pakistan-a region which is emblematic of broad environmental and public health challenges prevalent in South Asian countries. The study also aims to comprehend the impact of arsenic (As), fluoride (F), and nitrate (NO) dynamics and its health implications.

View Article and Find Full Text PDF

Groundwater is often used directly by the public in several river basins of India. Hence, this study was carried out with the objective of assessing the quality of groundwater in the Amaravathi basin, India, using a multiple indices approach. Groundwater quality data from 96 monitoring wells were obtained from the Central Groundwater Board and used in this study.

View Article and Find Full Text PDF

Long-term intake of high-fluoride water can cause fluorosis in bones and teeth or damage to organs. Fluoride in groundwater is primarily derived from reactions with rocks containing fluorine-related minerals, and fluoride concentrations are elevated in groundwater that has been reacting with these rocks for a long time. The purpose of this study is to investigate the origin and distribution of fluoride in groundwater and to assess the influence of various factors, including geology, on fluoride concentrations in groundwater.

View Article and Find Full Text PDF

Groundwater contamination with fluoride is a considerable public health concern that affects millions of people worldwide. The rapid growth of urbanization has led to increase in groundwater contamination. The health risk assessment focuses on both acute and chronic health consequences as it investigates the extent and effects of fluoride exposure through contaminated groundwater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!