Accumulation of protein-based (Aβ) aggregates on cellular membranes with varying structural properties is commonly recognized as the key step in Alzheimer's pathogenesis. But experimental and computational challenges have made this biophysical characterization difficult. In particular, studies connecting biological membrane organization and Aβ aggregation are limited. While experiments have suggested that an increased membrane curvature results in faster Aβ peptide aggregation in the context of Alzheimer's disease, a mechanistic explanation for this relation is missing. In this work, we are leveraging molecular simulations with a physics-based coarse grained model to address and understand the relationships between curved cellular membranes and aggregation of a model template peptide Aβ 16-22. In agreement with experimental results, our simulations also suggest a positive correlation between increased peptide aggregation and membrane curvature. More curved membranes have higher lipid packing defects that engage peptide hydrophobic groups and promote faster diffusion leading to peptide fibrillar structures. In addition, we curated the effects of peptide aggregation on the membrane's structure and organization. Interfacial peptide aggregation results in heterogeneous headgroup-peptide interactions and an induced crowding effect at the lipid headgroup region, leading to a more ordered headgroup region and disordered lipid-tails at the membrane core. This work presents a mechanistic and morphological overview of the relationships between the biomembrane local structure and organization, and Aβ peptide aggregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp02642a | DOI Listing |
Transl Neurodegener
January 2025
Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea.
Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
State University of Minas Gerais, Department of Biomedical Sciences and Health, Passos, MG, Brazil. Electronic address:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
The ADNI is detailed in Supplemental Acknowledgments.
Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.
Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.
Inflamm Res
January 2025
Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
Objective: We aimed to understand the potential therapeutic and anti-inflammatory effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast in models of pulmonary infection caused by betacoronaviruses.
Methods: Mice were infected intranasally with murine hepatitis virus (MHV-3) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Roflumilast was given to MHV-3-infected mice therapeutically at doses of 1 mg/kg or 10 mg/kg, or prophylactically at 10 mg/kg.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!