Low-Temperature Operating Black SnO-Based VOC Sensor Setup.

ACS Omega

Nanomaterials and Polymer Physics Lab, Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.

Published: September 2021

Volatile organic compounds (VOCs) are harmful to human beings and animals. VOCs include a carbon compound and its derivatives. VOCs irritate the eyes, ears, and throat, ahigh concentration of VOCs may cause cancer; also, it affects the central nervous system. A concentration below 0.3 mg/m is harmless, above which it is harmful to human beings. The present work discusses the detection of harmful VOCs using a lab-made portable device setup. Hydrothermally synthesized tin oxide (SnO) nanocubes are used as an active material for VOC detection. The SnO pellet is prepared using a hydraulic press method and is used in the portable setup. Temperature-dependent VOC detection is carried out using a microheater. An external potential is applied to the microheater, which stimulates the active material to sense ethanol at 40 °C. SnO and EA deposited on graphite interdigitated electrodes projected on cellulose are used to detect isopropanol, ethanol, and acetone at room temperature. Temperature-dependent studies on acetone are carried out. A significant change in the current levels is observed for different VOCs. A positive shift in the Dirac point is noticed upon VOC exposure. The developed portable device plays a vital role in analyzing sensors based on various active materials for VOC detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427796PMC
http://dx.doi.org/10.1021/acsomega.1c03399DOI Listing

Publication Analysis

Top Keywords

voc detection
12
harmful human
8
human beings
8
portable device
8
active material
8
vocs
6
voc
5
low-temperature operating
4
operating black
4
black sno-based
4

Similar Publications

Highly mutable pathogens generate viral diversity that impacts virulence, transmissibility, treatment, and thwarts acquired immunity. We previously described C19-SPAR-Seq, a high-throughput, next-generation sequencing platform to detect SARS-CoV-2 that we here deployed to systematically profile variant dynamics of SARS-CoV-2 for over 3 years in a large, North American urban environment (Toronto, Canada). Sequencing of the ACE2 receptor binding motif and polybasic furin cleavage site of the Spike gene in over 70,000 patients revealed that population sweeps of canonical variants of concern (VOCs) occurred in repeating wavelets.

View Article and Find Full Text PDF

Early detection of bacterial pneumonia by characteristic induced odor signatures.

BMC Infect Dis

December 2024

Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, Zurich, 8097, Switzerland.

Introduction: The ability to detect pathogenic bacteria before the onsets of severe respiratory symptoms and to differentiate bacterial infection allows to improve patient-tailored treatment leading to a significant reduction in illness severity, comorbidity as well as antibiotic resistance. As such, this study refines the application of the non-invasive Secondary Electrospray Ionization-High Resolution Mass Spectrometry (SESI-HRMS) methodology for real-time and early detection of human respiratory bacterial pathogens in the respiratory tract of a mouse infection model.

Methods: A real-time analysis of changes in volatile metabolites excreted by mice undergoing a lung infection by Staphylococcus aureus or Streptococcus pneumoniae were evaluated using a SESI-HRMS instrument.

View Article and Find Full Text PDF

Oxygenated VOC Detection Using SnO Nanoparticles with Uniformly Dispersed BiO.

Nanomaterials (Basel)

December 2024

Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan.

BiO particles are introduced as foreign additives onto SnO nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). BiO-loaded SnO materials are prepared via the impregnation method followed by calcination treatment. The abundant BiO/SnO interfaces are constructed by the uniform dispersion of BiO particles on the SnO surface.

View Article and Find Full Text PDF

The Impact of Public Health and Social Measures (PHSMs) on SARS-CoV-2 Transmission in the WHO European Region (2020-2022).

Influenza Other Respir Viruses

December 2024

Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.

Background: Between 2020 and 2022, countries used a range of different public health and social measures (PHSMs) to reduce the transmission of SARS-CoV-2. The impact of these PHSMs varied as the pandemic progressed, variants of concern (VOCs) emerged, vaccines rolled out and acceptance/uptake rates evolved. In this study, we assessed the impact of PHSMs in the World Health Organization (WHO) European Region during VOC phases.

View Article and Find Full Text PDF

Bioreactor contamination monitoring using off-gassed volatile organic compounds (VOCs).

Anal Bioanal Chem

December 2024

Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Sacramento, CA, USA.

Metabolically active cells emit volatile organic compounds (VOCs) that can be used in real time to non-invasively monitor the health of cell cultures. We utilized these naturally occurring VOCs in an adapted culture method to detect differences in culturing Chinese hamster ovary (CHO) cells with and without Staphylococcus epidermidis and Aspergillus fumigatus contaminations. The VOC emissions from the cell cultures were extracted and measured from the culture flask headspace using polydimethylsiloxane (PDMS)-coated Twisters, which were subjected to thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!