Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8414511PMC
http://dx.doi.org/10.1002/mdc3.13289DOI Listing

Publication Analysis

Top Keywords

gm1-gangliosidosis type
4
type iii
4
iii associated
4
associated parkinsonism
4
gm1-gangliosidosis
1
iii
1
associated
1
parkinsonism
1

Similar Publications

A natural history study of pediatric patients with early onset of GM1 gangliosidosis, GM2 gangliosidoses, or gaucher disease type 2 (RETRIEVE).

Orphanet J Rare Dis

December 2024

Division of Metabolism and Children's Research Center, Reference Center for Inborn Errors of Metabolism, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland.

Article Synopsis
  • RETRIEVE is a natural history study focused on the survival and disease progression of early-onset GM1, GM2, and type 2 Gaucher disease (GD2).
  • The study gathered data from 185 patients retrospectively and 40 patients prospectively, revealing varying median survival rates: GM1 (19 months), GM2 (44 months), and GD2 (14 months).
  • The findings noted that hypotonia was widespread among GM1 patients (94.4%), with additional symptoms like strabismus and splenomegaly specifically observed in GD2 patients, confirming known patterns of these rare lysosomal storage disorders.
View Article and Find Full Text PDF
Article Synopsis
  • GM1-gangliosidosis (GM1) causes significant brain degeneration, making it difficult to use automated MRI techniques for brain volume analysis. An effective standardized segmentation protocol was created to analyze MRIs from patients with type II GM1.
  • A study involving 25 MRIs from 22 patients assessed the reliability of this segmentation method, focusing on various brain structures and evaluating the consistency between different raters.
  • Results showed that the technique had good inter- and intra-rater reliability, especially for juvenile patients, which can enhance future research and understanding of the disease's progression over time.
View Article and Find Full Text PDF

Base editing of the GLB1 gene is therapeutic in GM1 gangliosidosis patient-derived cells.

Mol Genet Metab

October 2024

Division of Metabolic Disorders, Children's Hospital of Orange County Specialists, Orange, CA 92868, United States; Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, CA 92697, United States. Electronic address:

GM1 gangliosidosis is an autosomal recessive neurodegenerative lysosomal storage disease caused by pathogenic variants in the GLB1 gene, limiting the production of active lysosomal β-galactosidase. Phenotypic heterogeneity is due in part to variant type, location within GLB1, and the amount of residual enzyme activity; in the most severe form, death occurs in infancy. With no FDA approved therapeutics, development of efficacious strategies for the disease is pivotal.

View Article and Find Full Text PDF

Insights into the Pathobiology of GM1 Gangliosidosis from Single-Nucleus Transcriptomic Analysis of CNS Cells in a Mouse Model.

Int J Mol Sci

September 2024

Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.

GM1 gangliosidosis is a lysosomal storage disorder characterized by the accumulation of GM1 ganglioside, leading to severe neurodegeneration and early mortality. The disease primarily affects the central nervous system, causing progressive neurodegeneration, including widespread neuronal loss and gliosis. To gain a deeper understanding of the neuropathology associated with GM1 gangliosidosis, we employed single-nucleus RNA sequencing to analyze brain tissues from both GM1 gangliosidosis model mice and control mice.

View Article and Find Full Text PDF

GM1 gangliosidosis is one type of hereditary error of metabolism that occurs due to the absence or reduction of β-galactosidase enzyme content in the lysosome of cells, including neurons. In vitro, the use of neural cell lines could facilitate the study of this disease. By creating a cell model of GM1 gangliosidosis on the SH-SY5Y human nerve cell line, it is possible to understand the main role of this enzyme in breaking down lipid substrate and other pathophysiologic phenomena this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!