Wave intensity analysis is useful for analyzing coronary hemodynamics. Much of its clinical application involves the identification of waves indicated by peaks in the wave intensity and relating their presence or absence to different cardiovascular events. However, the analysis of wave intensity peaks can be problematic because of the associated noise in the measurements. This study shows how wave intensity analysis can be enhanced by using a Maximum Entropy Method (MEM). We introduce a MEM to differentiate between "peaks" and "background" in wave intensity waveforms. We apply the method to the wave intensity waveforms measured in the left anterior descending coronary artery from 10 Hypertrophic Obstructive Cardiomyopathy (HOCM) and 11 Controls with normal cardiac function. We propose a naming convention for the significant waves and compare them across the cohorts. Using a MEM enhances wave intensity analysis by identifying twice as many significant waves as previous studies. The results are robust when MEM is applied to the log transformed wave intensity data and when all of the measured data are used. Comparing waves across cohorts, we suggest that the absence of a forward expansion wave in HOCM can be taken as an indication of HOCM. Our results also indicate that the backward compression waves in HOCM are significantly larger than in Controls; unlike the forward compression waves where the wave energy in Controls is significantly higher than in HOCM. Comparing the smaller secondary waves revealed by MEM, we find some waves that are present in the majority of Controls and absent in almost all HOCM, and other waves that are present in some HOCM patients but entirely absent in Controls. This suggests some diagnostic utility in the clinical measurement of these waves, which can be a positive sign of HOCM or a subgroup with a particular pathology. The MEM enhances wave intensity analysis by identifying many more significant waves. The method is novel and can be applied to wave intensity analysis in all arteries. As an example, we show how it can be useful in the clinical study of hemodynamics in the coronary arteries in HOCM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429819 | PMC |
http://dx.doi.org/10.3389/fcvm.2021.701267 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime.
View Article and Find Full Text PDFSci Rep
January 2025
Mechanical Engineering Department, University of South Florida, Tampa, FL, 33620, USA.
We report on discovering the homogeneous boiling within a liquid film residual resting in equilibrium over a melting ice block. This phenomenon was induced via longwave infrared radiation generated by a continuous wave [Formula: see text] laser. This investigation employed a high-speed camera and the Schlieren visualization technique.
View Article and Find Full Text PDFACS Appl Opt Mater
December 2024
Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
Short-wave infrared (SWIR) phosphor-converted light-emitting diode (LED) technology holds promise for advancing broadband light sources. Despite the potential, limited research has delved into the energy transfer mechanism from sharp-line to broadband emission in SWIR phosphors, which remains underexplored. Herein, we demonstrate bright SWIR phosphors achieved through Cr/Ni energy transfer in LiGaAl O.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning, China.
A cantilever-enhanced fiber-optic photoacoustic (PA) spectrophone is reported for trace gas detection at a low-pressure environment. A cantilever-based fiber-optic Fabry-Perot (F-P) interferometer (FPI) is utilized for simultaneous measurement of air pressure and PA pressure. Since the cantilever resonance frequency follows air pressure linearly, the fundamental frequency intensity modulation (1-IM) technique is applied to scan the frequency response of the solid PA signal from tube wall absorption for tracking the cantilever resonance frequency in real time.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Russell Centre for Advanced Lightwave Science, Shanghai Institute of Optics and Fine Mechanics and Hangzhou Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
Continuous-wave mode-locking at multi-GHz repetition rates is achieved in an ultrashort laser cavity at critical pulse energies 100 times lower than predicted by conventional theory. The authors reveal that dynamic gain depletion and recovery between consecutive round-trips is the key factor behind a low-pulse-energy transition from Q-switched mode-locking (QSML) to continuous-wave mode-locking (CWML). As well as providing new insight into gain dynamics, the results suggest a practical route to low-threshold lasing at very high-repetition rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!