Introduction:  The purpose of this study was to evaluate bacterial adherence to common casting materials including plaster of Paris (plaster), fiberglass, three-dimensional (3D) printed plastic, and silicone-coated 3D printed plastic.

Methods: The minimal inhibitory concentration of a phosphate-free detergent (Palmolive) needed to achieve total bacterial kill off was determined. 3D printed polylactic acid plastic samples were coated with silicone. Plaster, fiberglass, plastic, and silicone-coated plastic samples were inoculated with . After bacterial inoculation, scanning electron microscopy of the samples was performed to visualize bacterial adherence to the materials' surface. Using either sterile water or a 5% detergent solution, the materials were subjected to washings. Each material was run in 30 replicates: 6 without washing, 6 with sterile water for 1 minute, 6 with detergent for 1 minute, 6 with sterile water for 3 minutes, and 6 with detergent for 3 minutes. The replicates that did not undergo a washing trial represented the initial bacterial inoculation. Samples were then rinsed and sonicated in polysorbate to isolate the remaining adherent bacteria on the materials' surface. The sonicated solutions were plated, incubated, and counted for quantification of colony forming units (CFU) of bacteria. This protocol was repeated for a total of four trials.

Results: During inoculation, there were significantly less bacteria that adhered to silicone-coated 3D printed plastic (58879 CFU) compared to plastic (217479 CFU), plaster (140063 CFU), and fiberglass (550546 CFU). Silicone coating showed further superiority. Silicone-coated 3D printed plastic was able to be decontaminated as demonstrated by significantly fewer remaining bacteria (9.3%) on its surface after being washed with a 5% detergent solution (1797 CFU) compared to sterile water (19321 CFU). The mean remaining bacteria on silicone-coated 3D printed plastic was significantly less than that remaining on all other materials when washed with either sterile water or a detergent solution for both durations of 1 minute and 3 minutes.

Conclusions: The current study demonstrates that significantly less bacteria adhere to the surface of 3D printed plastic with silicone coating showing added protection and that this material can be decontaminated to a greater degree with washing than conventional casting materials. These results provide evidence that 3D printed casts can be washed and successfully decontaminated during a patient's period of immobilization, which is advantageous especially during an infectious crisis such as the coronavirus disease 2019 (COVID-19) pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405175PMC
http://dx.doi.org/10.7759/cureus.16724DOI Listing

Publication Analysis

Top Keywords

printed plastic
20
sterile water
20
silicone-coated printed
16
bacterial adherence
12
detergent solution
12
plastic
9
casting materials
8
plaster fiberglass
8
printed
8
plastic silicone-coated
8

Similar Publications

Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Solvent-Tuned Plasticity for Various Binder-Free Applications of a New Lead-Free Manganese Halide.

Adv Mater

December 2024

Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.

The development of efficient color conversion layers for μ-LED technology faces significant challenges owing to the limitations of materials that require binders. Binders are typically used to ensure uniform film formation in color-conversion layers, but they often cause optical losses, increase layer thickness, and introduce long-term stability issues. To address the limitations of materials requiring binders, cyclopropyltriphenylphosphonium manganese tetrabromide (CPTPMnBr) is synthesized, a novel lead-free metal halide.

View Article and Find Full Text PDF

Background: Treating infectious bone defects combined with large soft-tissue lesions poses significant clinical challenges. Herein, we introduced a modified two-stage treatment approach involving the implantation of 3D-printed prostheses and flap repair to treat large segmental infectious tibial bone defects.

Method: We conducted a retrospective study of 13 patients treated at our center between April 2018 and March 2022 for tibial infections owing to posttraumatic infection and chronic osteomyelitis combined with soft tissue defects.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of acetyl tributyl citrate (ATBC) on the mechanical properties, abrasion resistance, and cytotoxicity of a polyurethane-based 3D printing resin for mouthguard applications. The synthesized polycarbonate-based polyurethane acrylate was formulated into digital light processing printing resins with 40 wt% triethylene glycol dimethacrylate, and different percentage of ATBC were added for further characterizations. The mechanical properties and abrasion resistance, ATBC migration, and the cytotoxicity of the resins were evaluated.

View Article and Find Full Text PDF

Effect of Graphene-Based Coating 3D Printing Process on the Remanence and Corrosion of Sintered NdFeB Magnets.

3D Print Addit Manuf

December 2024

Materials Science and Technology Center (CCTM), Nuclear, and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo, São Paulo, Brazil.

This study describes a 3D fused deposition modeling (FDM) printing process using a graphene-impregnated polylactic acid (G-PLA) filament to create a new type of rigid, plastic, nonconductive, and anticorrosion layer. Therefore, the possibility of 3D printing a plastic layer using FDM methods is demonstrated herein. A commercial magnet such as N35 NdFeB can be used to produce an efficient shielding film by additive manufacturing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!