Evaluation of Performance Properties of Sponge Hemostatic Dressings (Review).

Sovrem Tekhnologii Med

Associate Professor, Professor, Department of Operative Surgery and Topographic Anatomy, Kursk State Medical University, 3 K. Marx St., Kursk, 305041, Russia.

Published: January 2020

Dressings for restoring organ defects and/or hemostasis in the injury site are being actively applied in operational units. These dressings are used in various surgeries and are widely represented in the foreign and domestic markets of medical products. Many local implants have different levels of hemostatic activity, which requires standardization of the algorithm of choice and the methods of their study. Here the methods of studying the performance properties of hemostatic implants have been considered and evaluation criteria of their physical, chemical and organoleptic properties have been proposed. This will allow a researcher to choose optimal variants of samples for further experiments on biological models more effectively as well as to save funds, time and reduce the number of experiments .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353698PMC
http://dx.doi.org/10.17691/stm2020.12.1.16DOI Listing

Publication Analysis

Top Keywords

performance properties
8
evaluation performance
4
properties sponge
4
sponge hemostatic
4
hemostatic dressings
4
dressings review
4
review dressings
4
dressings restoring
4
restoring organ
4
organ defects
4

Similar Publications

Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.

View Article and Find Full Text PDF

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Objectives: The pairing of immunotherapy and radiotherapy in the treatment of locally advanced nonsmall cell lung cancer (NSCLC) has shown promise. By combining radiotherapy with immunotherapy, the synergistic effects of these modalities not only bolster antitumor efficacy but also exacerbate lung injury. Consequently, developing a model capable of accurately predicting radiotherapy- and immunotherapy-related pneumonitis in lung cancer patients is a pressing need.

View Article and Find Full Text PDF

Latent time series models such as (the independent sum of) ARMA(, ) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics. Inference on and/or prediction from these models can be highly challenging: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when the time series are extremely large; (iii) model selection adds another layer of (computational) complexity; and (iv) solutions that address (i), (ii), and (iii) simultaneously do not exist in practice. This paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance.

View Article and Find Full Text PDF

Noncovalent forces have a significant impact on photophysical properties, and the flexible employment of weak forces facilitates the design of novel luminescent materials with a variety of applications. The arene-perfluoroarene (AP) force, as one type of π-hole/π interaction, shows unique directionality, involving an electron-deficient π-hole interacting with a π-electron-rich region, facilitating precise orientation and stabilization in supramolecular structures. Here we present an amination engineering protocol to build a perfluoroarene library based on an octafluoronaphthalene skeleton with various steric and electronic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!