Organic-Mineral Interaction between Biomimetic Materials and Hard Dental Tissues.

Sovrem Tekhnologii Med

Professor, Head of the Department of Pediatric Dentistry and Orthodontics, Voronezh State Medical University named after N.N. Burdenko, 10 Studencheskaya St., Voronezh, 394036, Russia.

Published: January 2020

Unlabelled: was to study the integration between native human dental tissue and new-generation biomimetic materials replicating the mineral-organic complex of dentin and enamel using IR microspectroscopy for multidimensional visualization and analysis.

Materials And Methods: The conditions for stable integration at the interface between biomimetic material and natural hard tissue were identified using a biocomposite buffer system of nanocrystalline carbonate-substituted calcium hydroxyapatite corresponding in its total characteristics to human dentin-enamel apatite and a number of amino acids present in the organic matrix of dentin and enamel: L-histidine, L-lysine hydrochloride, L-arginine hydrochloride, and hyaluronic acid. The finished samples were studied using IR microspectroscopy on IRM channel equipment (The Australian Synchrotron, Melbourne, Australia).

Results: The characteristic features of the biomimetic buffer layer at the interface between the enamel and dental material were revealed and visualized based on IR mapping of absorption intensity for particular functional molecular groups with the use of synchrotron radiation, location of the functional groups involved in the processes of biomimetic composite integration was identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353705PMC
http://dx.doi.org/10.17691/stm2020.12.1.05DOI Listing

Publication Analysis

Top Keywords

biomimetic materials
8
dentin enamel
8
biomimetic
5
organic-mineral interaction
4
interaction biomimetic
4
materials hard
4
hard dental
4
dental tissues
4
tissues unlabelled
4
unlabelled study
4

Similar Publications

A Robust, Biodegradable, and Fire-Retardant Cellulose Nanofibers-Based Structural Material Fabricated from Natural Sargassum.

Adv Mater

January 2025

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus.

View Article and Find Full Text PDF

Biomimetic bone cartilage scaffolds based on trilayer methacrylated hydroxyapatite/GelMA composites for full-thickness osteochondral regeneration.

Int J Biol Macromol

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:

Since cartilage injury is often accompanied by subchondral bone damage, conventional single-phase materials cannot accurately simulate the osteochondral structure or repair osteochondral injury. In this work, a gradient gelatin-methacryloyl (GelMA) hydrogel scaffold was constructed by a layer-by-layer stacking method to realize full-thickness regeneration of cartilage, calcified cartilage and subchondral bone. Of note, to surmount the inadequate mechanical property of GelMA hydrogel, nanohydroxyapatite (nHA) was incorporated and further functionalized with hydroxyethyl methacrylate (nHA-hydroxyethyl methacrylate, nHAMA) to enhance the interfacial adhesion with the hydrogel, resulting in better mechanical strength akin to human bone.

View Article and Find Full Text PDF

Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.

View Article and Find Full Text PDF

Unlabelled: Guided bone regeneration (GBR) is an alternative treatment for craniofacial bone defects reconstruction through membrane barrier adaptation, such as demineralized dentin material membrane (DDMM). DDMM is used as a substitute for GBR material, which aligns with Green Economy principles, it has a good biological osteoinductive and osteoconductive effects, and its structure resembles bones. The balance of bone remodeling when experiencing craniofacial defects will be altered and allow changes to resorption activity, so the mechanisms of osteoclastogenesis and bone resorption are vital.

View Article and Find Full Text PDF

Assembly-enhanced recognition: A biomimetic pathway to achieve ultrahigh affinities.

Proc Natl Acad Sci U S A

January 2025

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!