This paper presents a study to examine the potential use of machine learning models to build a real-time detection algorithm for prevention of kitchen cooktop fires. Sixteen sets of time-dependent sensor signals were obtained from 60 normal/ignition cooking experiments. A total of 200 000 data instances are documented and analyzed. The raw data are preprocessed. Selected features are generated for time series data focusing on real-time detection applications. Utilizing the leave-one-out cross validation method, three machine learning models are built and tested. Parametric studies are carried out to understand the diversity, volume, and tendency of the data. Given the current dataset, the detection algorithm based on Support Vector Machine (SVM) provides the most reliable prediction (with an overall accuracy of 96.9 %) on pre-ignition conditions. Analyses indicate that using a multi-step approach can further improve overall prediction accuracy. The development of an accurate detection algorithm can provide reliable feedback to intercept ignition of unattended cooking and help reduce fire losses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431960PMC
http://dx.doi.org/10.1016/j.firesaf.2020.103043DOI Listing

Publication Analysis

Top Keywords

machine learning
12
detection algorithm
12
learning models
8
real-time detection
8
prediction accuracy
8
detection
5
prevention cooktop
4
cooktop ignition
4
ignition detection
4
detection multi-step
4

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!